
Lecture 7 (summary)

In this lecture, we introduce the notions of convergent sequences of graphs and graphons,
analytic objects associating with convergent sequences of graphs. Throughout this lecture,
we use v(G) to denote the number of vertices of G.

The density of a graph H in G is the probability that v(H) randomly chosen vertices of
G induce a copy of H and is denoted by d(H,G); if v(H) > v(G), we set d(H,G) = 0. The
homomorphism density of H in G, denoted by t(H,G), is the probability that a random
mapping from V (H) to V (G) is a homomorphism. We will also work with an injective
version of homomorphism densities, denoted by ti(H,G), which is the probability that a
random injective mapping from V (H) to V (G) is a homomorphism; again, if v(H) > v(G),
we set ti(H,G) = 0.

We next observe relations between the quantities that we have just defined. Consider
graphs H and G and an integer ℓ such that v(H) ≤ ℓ ≤ v(G), and observe that the
following identity holds:

d(H,G) =
∑

G′,v(G′)=ℓ

d(H,G′)d(G′, G).

Likewise, the following identity holds:

ti(H,G) =
∑

G′,v(G′)=v(H)

ti(H,G′)d(G′, G).

Fix ℓ ∈ N and let H1, . . . , HL be all graphs with ℓ vertices, listed in the non-decreasing
number of their edges. The above identity implies that the values of d(Hi, G), i ∈ [L],
determine the values of ti(Hi, G), i ∈ [L]. Consider a matrix A ∈ [0, 1]L×L where Aij =
t(Hi, Hj). Observe that Aii ̸= 0 for every i ∈ [L] and Aij = 0 for all L ≥ i > j ≥ 1, i.e. A

is an upper diagonal matrix with a non-zero diagonal and so A−1 exists. Note that Ad⃗ = t⃗i
where d⃗ = (d(H1, G), . . . , d(HL, G)) and t⃗i = (ti(H1, G), . . . , ti(HL, G)), and so A−1t⃗i = d⃗,
i.e. the values of ti(Hi, G), i ∈ [L], determine the values of d(Hi, G), i ∈ [L].

A sequence of graphs (Gn)n∈N is convergent if v(Gn) tends to infinity and the sequence
d(H,Gn)n∈N converges for every graph H. The latter is equivalent to that the sequence
ti(H,Gn) converges for every graph H, which is equivalent to that the sequence t(H,Gn)
converges for every graph H (here, we use that v(Gn) → ∞). Convergent sequences of
graphs can be represented by the following analytic object: a graphon W is symmetric mea-
surable [0, 1]2 → [0, 1], where symmetric stands for the property that W (x, y) = W (y, x)
for all (x, y) ∈ [0, 1]2. If W is a graphon, a W -random graph with n vertices is a random
graph obtained in the following way: choose x1, . . . , xn uniformly at random and join the
i-th vertex and j-th vertex with probability W (xi, xj) independently of the other pairs of
vertices. Note that if W is a constant graphon equal to p ∈ [0, 1], then the W -random
graph with n vertices is just the Erdős-Rényi random graph Gn,p.



The density of a graph H in a graphon W , denoted by d(H,W ) is the probability that
a W -random graph with v(H) vertices is H. Observe that

d(H,W ) =
v(H)!

|Aut(H)|

∫
[0,1]V (H)

∏
vw∈E(H)

W (xv, xw)
∏

vw ̸∈E(H)

1−W (xv, xw) dxV (H).

We say that a graphon W is a limit of a convergent sequence (Gn)n∈N of graphs if

d(H,W ) = lim
n→∞

d(H,Gn)

for every graph H. In the analogy to homomorphism densities, we define the homomor-
phism density of a graph H in a graphon W , denoted by t(H,W ), as

t(H,W ) =

∫
[0,1]V (H)

∏
vw∈E(H)

W (xv, xw) dxV (H).

If a graphon W is a limit of a convergent sequence (Gn)n∈N of graphs, then it holds that

t(H,W ) = lim
n→∞

t(H,Gn) = lim
n→∞

ti(H,Gn)

for every graph H. A limit graphon of a convergent sequence (Gn)n∈N of graphs is not
unique. If W is a graphon and φ is a measure preserving map [0, 1] → [0, 1], then we
define Wφ to be the graphon defined as Wφ(x, y) = W (φ(x), φ(y)). If W is a limit
of a convergent sequence (Gn)n∈N, then Wφ is also a limit of (Gn)n∈N for any measure
preserving map φ : [0, 1] → [0, 1]. It can be shown that if graphons W1 and W2 satisfy that
d(H,W1) = d(H,W2) for every graph H, then there exist measure preserving maps φ1 and
φ2 such that Wφ1

1 (x, y) = Wφ2

2 (x, y) for almost all (x, y) ∈ [0, 1]2.
In one of the future lectures, we show that every convergent sequence of graphs has a

limit graphon. We finish this lecture by showing that for every graphon W there exists
a convergent sequence of graphs such that W is its limit. Specifically, we show that if
Gn is a W -random graph with n vertices, then the sequence (Gn)n∈N is convergent and
its limit is W with probability one. To do so, it is enough to show that for every H,
the sequence d(H,Gn)n∈N converges to d(H,W ) with probability one. We will define a

sequence of Xk, k = 0, . . . , n, of random variables on the space [0, 1]n × [0, 1](
n
2), which we

understand to determine the result of the process of generating the W -random graph with

n vertices; indeed, if (x1, . . . , xn, y11, . . . , y1n, . . . , yn−1,n) ∈ [0, 1]n × [0, 1](
n
2), we can think

that the resulting graph contains an edge between the i-th vertex and the j-th vertex iff
yij ≤ W (xi, xj). Let Xk for k = 0, . . . , n be the expected number of induced copies of H
condition on the values of x1, . . . , xk and y11, . . . , yk−1,k. Note that X0 = d(H,W )

(
n

v(H)

)
and Xk is the random variable equal to the actual number of copies of H in the graph
obtained by the above process, which has the same distribution as the number of copies of
H in the W -random graph with n vertices. Note that the expected value of Xk, k ∈ [n],
conditioned on Xk−1 = z is equal to z, i.e. the sequence of random variables X0, . . . , Xk



forms a martingale. Next observe that |Xk − Xk−1| ≤
(

n
v(H)−1

)
≤ nv(H)−1, which implies

using the Azuma-Hoeffding Inequality that the probability that |Xk − X0| ≥ ε
(

n
v(H)

)
,

which is equal to the probability that d(H,Gn) and d(H,W ) differ by at least ε, is at most

2e
−

ε2( n
v(H))

2

n·n2(v(H)−1) = 2e−Θ(n). The Borel-Cantelli Lemma now implies that with probability
one, there exists n0 such that |d(H,Gn) − d(H,W )| ≤ ε for all n ≥ n0. It follows that
d(H,Gn)n∈N converges to d(H,W ) with probability one.

We leave as an exercise to show the analogous statement in the realm of permutations
that for every permuton µ there exists a convergent sequence of permutations such that µ
is its limit.

Exercise. Show that for every permuton µ the sequence of µ-random permutations with
increasing sizes converges to µ with probability one.


