Lecture 6 (summary)

In this lecture, we will prove Szemerédi Regularity Lemma. We first recall the statement.

Lemma (Szemerédi Regularity Lemma, 1978). For every $\varepsilon > 0$ and $k_0 \in \mathbb{N}$, there exists $K_0 \in \mathbb{N}$ such that every graph G with at least k_0 vertices has a vertex partition $V_0 \cup V_1 \cup \cdots \cup V_k$, $k_0 \leq k \leq K_0$, such that

- $|V_0| \leq \varepsilon |V(G)|$ and $|V_1| = \cdots = |V_k|$, and
- all pairs of parts V_i and V_j , $1 \le i < j \le k$, except for at most εk^2 pairs satisfy that

$$\left|\frac{e(A,B)}{|A||B|} - \frac{e(V_i,V_j)}{|V_i||V_J|}\right| \le \varepsilon$$

holds for all subsets $A \subseteq V_i$ and $B \subseteq V_j$ with $|A| \ge \varepsilon |V_i|$ and $|B| \ge \varepsilon |V_j|$,

where e(X, Y) denotes the number of edges between sets X and Y.

Recall that the pairs V_i and V_j that satisfy the property given in the second bullet point of the lemma are referred to as ε -regular.

Fix $\varepsilon \in (0, 1/2)$ and $k_0 \in \mathbb{N}$; the value of K_0 will follow from the proof. The construction of the desired partition of the vertex set of a given graph G proceeds in rounds and the partition of the vertex set of G is refined in each round. Throughout the proof, the number of vertices of G will be denoted by n.

The partition after m rounds will be denoted by $V_0^m \cup V_1^m \cup \cdots \cup V_{k_m}^m$ and it will satisfy that $|V_0^m| \leq \frac{(m+1)\varepsilon^6 n}{32}$, $|V_1^m| = \cdots = |V_{k_m}^m|$, and, if m > 0, $k_m \leq K_m$ for a value of K_m to be determined later. We define the following quantity for a pair of disjoint subsets A and Bof V(G) (the intuition behind the quantity that it is a "weighted" square of the density of the pair A and B):

$$q(A,B) = \frac{|A| |B|}{n^2} \left(\frac{e(A,B)}{|A| |B|}\right)^2 = \frac{e(A,B)^2}{|A| |B| n^2}$$

For a partition \mathcal{P} of the vertex set of G, we define $q(\mathcal{P})$ to be the sum of all q(A, B) over all pairs of distinct parts A and B of \mathcal{P} . Observe that

$$q(\mathcal{P}) = \sum_{A \neq B \in \mathcal{P}} q(A, B) = \sum_{A \neq B \in \mathcal{P}} \frac{e(A, B)^2}{|A| |B| n^2} \le \sum_{A \neq B \in \mathcal{P}} \frac{|A|^2 |B|^2}{|A| |B| n^2} = \sum_{A \neq B \in \mathcal{P}} \frac{|A| |B|}{n^2} < 1.$$

Throughout the proof, we will understand the partition $V_0^m \dot{\cup} V_1^m \dot{\cup} \cdots \dot{\cup} V_{k_m}^m$ to be the partition into $|V_0^m| + k_m$ sets that are all one-element subsets of V_0^m and k_m sets $V_1^m, \ldots, V_{k_m}^m$. In each round, the quantity $q(\cdot)$ will increase by at least $\varepsilon^5/16$ and so the number of rounds will be at most $M = \lfloor 16\varepsilon^{-5} \rfloor$. Before proceeding further, we analyze the difference $q(A_1, B) + q(A_2, B) - q(A, B)$ where $A = A_1 \dot{\cup} A_2$:

$$q(A_1, B) + q(A_2, B) - q(A, B) = \frac{e(A_1, B)^2}{|A_1| |B| n^2} + \frac{e(A_2, B)^2}{|A_2| |B| n^2} - \frac{e(A, B)^2}{|A| |B| n^2}$$

$$= \frac{|A_1| |A_2| |B|}{|A|n^2} \left(\frac{|A| e(A_1, B)^2}{|A_1|^2|A_2| |B|^2} + \frac{|A| e(A_2, B)^2}{|A_2|^2|A_1| |B|^2} - \frac{e(A, B)^2}{|A_1| |A_2| |B|^2} \right)$$

$$= \frac{|A_1| |A_2| |B|}{|A|n^2} \left(\frac{e(A_1, B)^2}{|A_1|^2|B|^2} + \frac{e(A_2, B)^2}{|A_2|^2|B|^2} - \frac{2e(A_1, B)e(A_2, B)}{|A_1| |A_2| |B|^2} \right)$$

$$= \frac{|A_1| |A_2| |B|}{|A|n^2} \left(\frac{e(A_1, B)}{|A_1| |B|^2} - \frac{e(A_2, B)}{|A_2||B|} \right)^2 \ge 0.$$

In particular, it follows that refining a partition \mathcal{P} never decreases $q(\mathcal{P})$.

We now resume the proof of the Szemerédi Regularity Lemma. The initial partition is obtained by splitting the vertices of G into k_0 sets $V_1^0, \ldots, V_{k_0}^0$ each with $\lfloor n/k_0 \rfloor$ vertices and placing the remaining k_0 vertices to the set V_0^0 . If $k_0 \leq \varepsilon^5 n/32$, then the initial partition has the properties to start the iterative proof; otherwise, $n \leq 32k_0\varepsilon^{-5}$ and by setting $K_0 \geq 32k_0\varepsilon^{-5}$, the partition sought in the lemma can be the partition of V(G) into n one-element sets.

We now describe the iterative step, which starts with a partition $V_0^m \cup V_1^m \cup \cdots \cup V_{k_m}^m$ described as above. If all but εk_m^2 pairs $1 \le i < j \le k_m$ satisfy that the pair V_i^m and V_j^m is ε -regular, then we have the desired partition and stop. Observe that if $X \subseteq V_i$ and $Y \subseteq V_j$ witness that the pair V_i and V_j is not ε -regular, then

$$\left|\frac{e(X,V_j)}{|X||V_j|} - \frac{e(V_i \setminus X, V_j)}{|V_i \setminus X||V_j|}\right| \ge \frac{\varepsilon}{2} \text{ or } \left|\frac{e(X,Y)}{|X||Y|} - \frac{e(X,V_j \setminus Y)}{|X||V_j \setminus Y|}\right| \ge \frac{\varepsilon}{2}.$$

It follows that the difference $q(X, Y) + q(V_i \setminus X, Y) + q(X, V_j \setminus Y) + q(V_i \setminus X, V_j \setminus Y) - q(V_i, V_j)$ is at least

$$\frac{\varepsilon^2}{2} \cdot \frac{|V_i| |V_j|}{n^2} \left(\frac{\varepsilon}{2}\right)^2 = \frac{\varepsilon^4}{8} \cdot \frac{|V_i| |V_j|}{n^2} \ge \frac{\varepsilon^4}{32} \frac{1}{k_m^2}.$$

For every pair V_i and V_j that is not ε -regular fix a partition as defined above and for every ε -regular pair, fix any partition of each set into two disjoint sets. Consider the refinement of the partition $V_1^m \dot{\cup} \cdots \dot{\cup} V_{k_m}^m$ to a partition with $2^{k_m-1}k_m$ parts such that two vertices are in the same part iff they belong to the same V_i and they are in the same part for any partition involving V_i . Note that the value $q(\cdot)$ increased by at least $2\varepsilon k_m^2 \frac{\varepsilon^4}{32} \frac{1}{k_m^2} = \frac{\varepsilon^5}{16}$. Split each of the obtained parts into parts of size exactly $\left\lfloor \frac{\varepsilon^6}{32} \cdot \frac{n}{2^{k_m-1}k_m} \right\rfloor$ and move the vertices that do not fit to the garbage part, which now becomes the set V_0^{m+1} . Note that the size of V_0^{m+1} is at most $|V_0^m| + 2^{k_m-1}k_m \cdot \frac{\varepsilon^6}{32} \cdot \frac{n}{2^{k_m-1}k_m} \leq \frac{(m+2)\varepsilon^6 n}{32}$. We set $K_{m+1} = 2^{K_m+4}K_m\varepsilon^{-6}$ and note that the number k_{m+1} of the obtained parts is at most K_{m+1} . Since the value of $q(\cdot)$ increases by at least $\frac{\varepsilon^5}{16}$ in each iteration, the whole process ends after at most M iterations, at which points we have at most $K_0 := \max\{K_M, 32k_0\varepsilon^{-5}\}$ parts in addition to the garbage part, which has size at most $\frac{(M+1)\varepsilon^6 n}{32} \leq \varepsilon n^2$.