Lecture 4 (summary)

In this lecture, we introduce the regularity method, focusing on regularity decompositions of graphs. Szemerédi Regularity Lemma, which we will prove later, states that every graph can be decomposed into a bounded number of parts such that most them interact in a quasirandom way.

Lemma (Szemerédi Regularity Lemma, 1978). For every $\varepsilon > 0$ and $k_0 \in \mathbb{N}$, there exists $K_0 \in \mathbb{N}$ such that every graph G has a vertex partition $V_0 \cup V_1 \cup \cdots \cup V_k$, $k_0 \leq k \leq K_0$, such that

- $|V_0| \leq \varepsilon |V(G)|$ and $|V_1| = \cdots = |V_k|$, and
- all pairs of parts V_i and V_j , $1 \le i < j \le k$, except for at most εk^2 pairs satisfy that

$$\left|\frac{e(A,B)}{|A||B|} - \frac{e(V_i,V_j)}{|V_i||V_J|}\right| \le \varepsilon$$

holds for all subsets $A \subseteq V_i$ and $B \subseteq V_j$ with $|A| \ge \varepsilon |V_i|$ and $|B| \ge \varepsilon |V_j|$,

where e(X, Y) denotes the number of edges between sets X and Y.

The pairs V_i and V_j that satisfy the property given in the second bullet point of the lemma are referred to as ε -regular.

To illustrate the statement of Szemerédi Regularity Lemma, we prove the Graph Removal Lemma for triangles. In its full generality, the Graph Removal Lemma reads as follows.

Lemma (the Graph Removal Lemma). For every $\varepsilon > 0$ and every graph H, there exists $\delta > 0$ such that every n-vertex graph G satisfies (at least) one of the following:

- G contains at least $\delta n^{|V(H)|}$ copies of H, or
- there exists a set $F \subseteq E(G)$ such that $|F| \leq \varepsilon n^2$ and $G \setminus F$ is H-free.

We proved the Graph Removal Lemma when $H = K_3$ in the lecture and we include a proof sketch here.

Sketch of proof for $H = K_3$. Fix $\varepsilon \in (0, 1)$, and apply Szemerédi Regularity Lemma with $\varepsilon_R = \varepsilon/100$ and $k_0 = \lceil \varepsilon_R^{-1} \rceil$ to get K_0 . Let G be an n-vertex graph, and apply Szemerédi Regularity Lemma to get a partition of V(G) to $V_0 \cup V_1 \cup \cdots \cup V_k$ as in the statement of Szemerédi Regularity Lemma. Let $d_0 = \varepsilon/10$ and construct an auxiliary graph R with vertices corresponding to the parts V_1, \ldots, V_k ; a pair vertices corresponding to V_i and V_j is joined by an edge if V_i and V_j is an ε -regular pair and $e(V_i, V_j) \ge d_0|V_i| |V_j|$.

If R has no triangle, then set F to contain all edges incident with a vertex of V_0 , all edges inside the parts V_1, \ldots, V_k , all edges between any pair of parts V_i and V_j such that

 V_i and V_j is not an ε -regular pair or $e(V_i, V_j) < d_0 |V_i| |V_j|$. Note that the graph $G \setminus F$ has no triangle. A simple counting argument shows that $|F| \leq \varepsilon n^2$.

If R has a triangle, we may assume by changing the indices of the parts that every pair of the parts V_1 , V_2 and V_3 is an ε -regular pair and $e(V_i, V_j) \ge d_0|V_i| |V_j|$ for all $1 \le i < j \le 3$. Using that V_1 and V_i for $i \in \{2, 3\}$, we show that all but $\varepsilon |V_1|$ vertices of V_1 have at least

$$\left(\frac{e(V_1, V_i)}{|V_1| |V_i|} - \varepsilon\right) |V_i| \ge \frac{d_0}{2} |V_i|$$

neighbors in V_i . Consider a vertex w of V_1 with at least $\frac{d_0}{2} |V_2|$ neighbors in V_2 and at least $\frac{d_0}{2} |V_3|$ neighbors in V_3 , and let A and B be the neighbors of w in V_2 and V_3 , respectively. Since $|A| \ge \varepsilon_R |V_2|$ and $|B| \ge \varepsilon_R |V_3|$, we obtain that $e(A, B) \ge (d_0 - \varepsilon)|A| |B|$, i.e., w is in at least e(A, B) triangles. Since the size of each set V_1 , V_2 and V_3 is at least $(1 - \varepsilon_R)n/K_0$, it follows that the statement of the lemma holds with $\delta = \frac{d_0^3}{32K_0^3}$.

Proving the Graph Removal Lemma in full generality as an exercise, which is split into two steps (each including a different technical challenge to overcome).

Exercise. Prove the Graph Removal Lemma when H is any complete graph.

Exercise. Prove the Graph Removal Lemma for all graphs H.