
Lecture 1 (summary)

In this lecture, we start building limit theory of permutations. A permutation of size k is a
bijective mapping from [k] to [k], where [k] denotes the set of the first k positive integers.
If π is a permutation, then |π| denotes its size. Permutations will be understood from the
combinatorial point of view only. In particular, a permutation of size k can be thought as
two linear orders on the set [k]: the first is the usual order on [k] and the other is given by
the images of the elements. A subpermutation of a permutation π induced by A =⊆ [k] is a
permutation σ of order |A| such that σ(i) < σ(j) iff π(ai) < π(aj) where a1 < · · · < a|A| are
the elements of A. We remark that subpermutations are usually called patterns, however,
the terminology used is closer to that of graphs to be seen later in the course.

The density of a permutation σ in a permutation π, which is denoted by d(σ, π), is
the probability that the subpermutation of π induced by a randomly uniform |σ|-element
subset of π is σ. We set d(σ, π) = 0 when |σ| > |π|. We say that a sequence (πn)n∈N of
permutations is convergent if |πn| → ∞ and d(σ, πn) converges for every permutation σ.
Observe that the following holds for all permutations σ and π and every integer k such
that |σ| ≤ k ≤ |π|:

d(σ, π) =
∑
σ′∈Sk

d(σ, σ′)d(σ′, π).

Once we have built the necessary framework, the first result that we will prove using
permutation limits will be the following theorem.

Theorem. Let (πn)n∈N be a sequence of permutations such that |πn| → ∞. If it holds that
limn→∞ d(σ, πn) = 1/24 for every permutation σ of size 4, then the sequence (πn)n∈N is
convergent and limn→∞ d(σ, πn) = 1/|σ|! for every permutation σ.

The above statement is an analogue of the C4 statement we saw in Lecture 0 on quasir-
andom graphs and was stated as an open problem (with 4 replaced with any constant) by
Graham around 2000. The statement was proven using the theory of permutation limits
about a decade later, however, an equivalent statement was proven in statistics in relation
to non-parametric test of independence by Hoeffding already in 1948 (with 4 replaced by
5).

Convergent sequences of permutations can be associated with the following analytic
limit object: a permuton is a probability measure µ on [0, 1]2 with uniform marginals, i.e.,
µ([a, b]× [0, 1]) = µ([0, 1]× [a, b]) = b− a. The original limit object developed by Hoppen,
Kohayakawa, Moreira, Ráth and Sampaio was more complex although mathematically
equivalent, and it became standard to use permutons only to represent permutation limits.
If µ is a permuton, then a µ-random permutation of size k is obtained as follows. First,
sample k points (x1, y1), . . . , (xk, yk) according to µ; note that the k points have mutually
distinct x-coordinates or y-coordinates with probability one. Assume (by renaming the
points) that x1 < · · · < xk and define the permutation π of size k such that π(i) < π(j)
iff yi < yj. Finally, if σ is a permutation of size k, then the density of σ in µ, which is
denoted by d(σ, µ), is the probability that a µ-random permutation of size k is σ.



We say that a permuton µ is a limit of a convergent sequences (πn)n∈N of permutations
if d(σ, µ) = limn→∞ d(σ, πn) for every permutation σ. In the rest of the lecture, we prepare
for proving the following theorem.

Theorem. Every convergent sequence of permutations has a limit permuton.

We leave the the following as an exercise.

Exercise. The limit permuton of every convergent sequence of permutations is unique.

We first establish the following lemma.

Lemma. Let (πn)n∈N be a convergent sequence of permutations. There exists a convergent
sequence (π′

n)n∈N of permutations such that for every k, there exists nk that the size of
every π′

n for n ≥ nk is divisible by 2k and limn→∞ d(σ, π′
n) = limn→∞ d(σ, πn).

Note that it is enough to prove the existence of a limit permuton for convergent sequence
of permutations having the property stated in the lemma above. Fix such a convergent
sequence (πn)n∈N of permutations and let nk be such that the size of every πn for n ≥ nk

is divisible by 2k. Define matrices Ak
n ∈ [0, 1]2

k×2k for k ∈ N and n ≥ nk as

(Ak
n)i,j =

∣∣∣{x s.t. (i−1)|πn|
2k

< x ≤ i|πn|
2k

and (j−1)|πn|
2k

< πn(x) ≤ j|πn|
2k

}∣∣∣
|πn|

.

It can be shown that the matrices Ak
n coordinate-wise converge for every k ∈ N. However,

since the proof of this statement is technical, we rather consider a subsequence of (πn)n∈N
such that the matrices Ak

n coordinate-wise converge for every k ∈ N; let Ak be the limit
matrix.

We say that X ⊆ [0, 1)2 is dyadic of order k ∈ N if X is of the form
[
i−1
2k

, i
2k

)
×[

j−1
2k

, j
2k

)
for some i, j ∈ [2k]. Consider the family A of subsets of [0, 1)2 that are finite

unions of dyadic. Note that A is closed under taking complements, finite unions and finite
intersections, i.e., A is an algebra of sets. Observe that every set X in A can be expressed
as a union of dyadic sets of the same order k and define a premeasure µ0 by setting µ0(X)
to be the sum of the corresponding coordinates of the matrix Ak. Since it holds that

µ0

(⋃
i∈N

Ai

)
=

∞∑
i=1

µ0(Ai)

for every sequence (Ai)i∈N of disjoint sets from A such that
⋃

i∈N Ai ∈ A, Carathéodory’s
extension theorem implies that there exists a measure µ on the σ-algebra of Borel subsets
of [0, 1)2 (and so on the σ-algebra of Borel subsets of [0, 1]2) such that

µ

([
i− 1

2k
,
i

2k

)
×
[
j − 1

2k
,
j

2k

))
= Ak

ij

for every k ∈ N and all i, j ∈ [2k]. In the next lecture, we show that this measure µ is the
limit permuton of the sequence (πn)n∈N.


