
Optimizing large applications

Honza Hubička
SuSE ČR s.r.o
Martin Liška

Charles University

SUSElabs conf, 2013

J. Hubička Optimizing large applications

Outline

J. Hubička Optimizing large applications

Massive performance regression from switching to gcc
4.5

Hi,
Just wanted to give a heads up on what might be the biggest
compiler-upgrade-related performance difference we’ve seen at
Mozilla.

We switched gcc4.3 for gcc4.5 and our automated benchmarking
infrastructure reported 4-19% slowdown on most of our performance
metrics on 32 and 64bit Linux.

...

Most of the code is compiled with -fPIC -fno-rtti
-fno-exceptions -Os -freorder-blocks
-fomit-frame-pointer.

Taras Glek (2010)

J. Hubička Optimizing large applications

First look at firefox situation

. . . Why they use so old GCC for release builds? It builds
just fine with trunk GCC.

. . . why they build with -Os and complain about runtime?

. . . this beast is much bigger than I expected

. . . why all the performance critical functionality is in a
library libxul rather than main firefox binary?
. . . why libxul contains private copies of libffi, gtk,
cairo, you name it,

J. Hubička Optimizing large applications

First look at firefox situation

. . . Why they use so old GCC for release builds? It builds
just fine with trunk GCC.
. . . why they build with -Os and complain about runtime?

. . . this beast is much bigger than I expected

. . . why all the performance critical functionality is in a
library libxul rather than main firefox binary?
. . . why libxul contains private copies of libffi, gtk,
cairo, you name it,

J. Hubička Optimizing large applications

First look at firefox situation

. . . Why they use so old GCC for release builds? It builds
just fine with trunk GCC.
. . . why they build with -Os and complain about runtime?
. . . this beast is much bigger than I expected

. . . why all the performance critical functionality is in a
library libxul rather than main firefox binary?
. . . why libxul contains private copies of libffi, gtk,
cairo, you name it,

J. Hubička Optimizing large applications

First look at firefox situation

. . . Why they use so old GCC for release builds? It builds
just fine with trunk GCC.
. . . why they build with -Os and complain about runtime?
. . . this beast is much bigger than I expected
. . . why all the performance critical functionality is in a
library libxul rather than main firefox binary?

. . . why libxul contains private copies of libffi, gtk,
cairo, you name it,

J. Hubička Optimizing large applications

First look at firefox situation

. . . Why they use so old GCC for release builds? It builds
just fine with trunk GCC.
. . . why they build with -Os and complain about runtime?
. . . this beast is much bigger than I expected
. . . why all the performance critical functionality is in a
library libxul rather than main firefox binary?
. . . why libxul contains private copies of libffi, gtk,
cairo, you name it,

J. Hubička Optimizing large applications

Outline

J. Hubička Optimizing large applications

Optimizations levels at a glance

-O2 the default optimization level supposed to do wise
code size vs performance tradeoffs.

-O3/-Ofast optimize performance as much as possible!
. . . shoot yourself into leg if program is too big

automatic inlining, function specialization, autovectorization,
loop unswitching, memset/memcpy discovery, . . .

-Os reduce size as much as possible
Inline and specialize only when code shrinks
Instruction selection (push, pop, rep movsb, rep
stosb, mult/idiv by constant rather than sequence of
arithmetics,. . .
No code expanding optimizations (unrolling, vectorizing)

Over time -O3 code gets bigger and slightly faster, -Os code
gets much slower and (sometimes) slightly smaller.

J. Hubička Optimizing large applications

Optimizations levels at a glance

-O2 the default optimization level supposed to do wise
code size vs performance tradeoffs.
-O3/-Ofast optimize performance as much as possible!

. . . shoot yourself into leg if program is too big
automatic inlining, function specialization, autovectorization,
loop unswitching, memset/memcpy discovery, . . .

-Os reduce size as much as possible
Inline and specialize only when code shrinks
Instruction selection (push, pop, rep movsb, rep
stosb, mult/idiv by constant rather than sequence of
arithmetics,. . .
No code expanding optimizations (unrolling, vectorizing)

Over time -O3 code gets bigger and slightly faster, -Os code
gets much slower and (sometimes) slightly smaller.

J. Hubička Optimizing large applications

Optimizations levels at a glance

-O2 the default optimization level supposed to do wise
code size vs performance tradeoffs.
-O3/-Ofast optimize performance as much as possible!
. . . shoot yourself into leg if program is too big

automatic inlining, function specialization, autovectorization,
loop unswitching, memset/memcpy discovery, . . .

-Os reduce size as much as possible
Inline and specialize only when code shrinks
Instruction selection (push, pop, rep movsb, rep
stosb, mult/idiv by constant rather than sequence of
arithmetics,. . .
No code expanding optimizations (unrolling, vectorizing)

Over time -O3 code gets bigger and slightly faster, -Os code
gets much slower and (sometimes) slightly smaller.

J. Hubička Optimizing large applications

Optimizations levels at a glance

-O2 the default optimization level supposed to do wise
code size vs performance tradeoffs.
-O3/-Ofast optimize performance as much as possible!
. . . shoot yourself into leg if program is too big

automatic inlining, function specialization, autovectorization,
loop unswitching, memset/memcpy discovery, . . .

-Os reduce size as much as possible
Inline and specialize only when code shrinks
Instruction selection (push, pop, rep movsb, rep
stosb, mult/idiv by constant rather than sequence of
arithmetics,. . .
No code expanding optimizations (unrolling, vectorizing)

Over time -O3 code gets bigger and slightly faster, -Os code
gets much slower and (sometimes) slightly smaller.

J. Hubička Optimizing large applications

Optimizations levels at a glance

-O2 the default optimization level supposed to do wise
code size vs performance tradeoffs.
-O3/-Ofast optimize performance as much as possible!
. . . shoot yourself into leg if program is too big

automatic inlining, function specialization, autovectorization,
loop unswitching, memset/memcpy discovery, . . .

-Os reduce size as much as possible
Inline and specialize only when code shrinks
Instruction selection (push, pop, rep movsb, rep
stosb, mult/idiv by constant rather than sequence of
arithmetics,. . .
No code expanding optimizations (unrolling, vectorizing)

Over time -O3 code gets bigger and slightly faster, -Os code
gets much slower and (sometimes) slightly smaller.

J. Hubička Optimizing large applications

Fixing -Os for firefox.

-Os was designed with low level programming in mind. It
happens when:

1 When static function is inlined few enough times so whole
compile units shrinks after it is fully inlined.

2 When caller is known to shrink after inlining.

C++ inline functions are usually not static/in anonymous
namespace. COMDAT sections merged at linktime.

Rule 1 never applies here.
-param comdat-sharing-probability=20% specify
chance that unification at linktime happens.
Rule 2 is too weak. GCC inliner can anticipate just fraction
of optimizations. I made inliner to gamble.

J. Hubička Optimizing large applications

Fixing -Os for firefox.

-Os was designed with low level programming in mind. It
happens when:

1 When static function is inlined few enough times so whole
compile units shrinks after it is fully inlined.

2 When caller is known to shrink after inlining.
C++ inline functions are usually not static/in anonymous
namespace. COMDAT sections merged at linktime.

Rule 1 never applies here.
-param comdat-sharing-probability=20% specify
chance that unification at linktime happens.
Rule 2 is too weak. GCC inliner can anticipate just fraction
of optimizations. I made inliner to gamble.

J. Hubička Optimizing large applications

Fixing -Os for firefox.

-Os was designed with low level programming in mind. It
happens when:

1 When static function is inlined few enough times so whole
compile units shrinks after it is fully inlined.

2 When caller is known to shrink after inlining.
C++ inline functions are usually not static/in anonymous
namespace. COMDAT sections merged at linktime.

Rule 1 never applies here.
-param comdat-sharing-probability=20% specify
chance that unification at linktime happens.

Rule 2 is too weak. GCC inliner can anticipate just fraction
of optimizations. I made inliner to gamble.

J. Hubička Optimizing large applications

Fixing -Os for firefox.

-Os was designed with low level programming in mind. It
happens when:

1 When static function is inlined few enough times so whole
compile units shrinks after it is fully inlined.

2 When caller is known to shrink after inlining.
C++ inline functions are usually not static/in anonymous
namespace. COMDAT sections merged at linktime.

Rule 1 never applies here.
-param comdat-sharing-probability=20% specify
chance that unification at linktime happens.
Rule 2 is too weak. GCC inliner can anticipate just fraction
of optimizations. I made inliner to gamble.

J. Hubička Optimizing large applications

Firefox and optimizations levels

Half a year later. . .

“Hey I fixed the -Os problems. It was a piece of a cake.”

“Oh cool. But we use -O3 now. . .

“Uh, why you don’t use -O2?”

. . . we solved the startup time issues.”

“hmm, startup time issues?”

J. Hubička Optimizing large applications

Firefox and optimizations levels

Half a year later. . .

“Hey I fixed the -Os problems. It was a piece of a cake.”

“Oh cool. But we use -O3 now. . .

“Uh, why you don’t use -O2?”

. . . we solved the startup time issues.”

“hmm, startup time issues?”

J. Hubička Optimizing large applications

Firefox and optimizations levels

Half a year later. . .

“Hey I fixed the -Os problems. It was a piece of a cake.”

“Oh cool. But we use -O3 now. . .

“Uh, why you don’t use -O2?”

. . . we solved the startup time issues.”

“hmm, startup time issues?”

J. Hubička Optimizing large applications

Firefox and optimizations levels

Half a year later. . .

“Hey I fixed the -Os problems. It was a piece of a cake.”

“Oh cool. But we use -O3 now. . .

“Uh, why you don’t use -O2?”

. . . we solved the startup time issues.”

“hmm, startup time issues?”

J. Hubička Optimizing large applications

Firefox and optimizations levels

Half a year later. . .

“Hey I fixed the -Os problems. It was a piece of a cake.”

“Oh cool. But we use -O3 now. . .

“Uh, why you don’t use -O2?”

. . . we solved the startup time issues.”

“hmm, startup time issues?”

J. Hubička Optimizing large applications

Firefox and optimizations levels

Half a year later. . .

“Hey I fixed the -Os problems. It was a piece of a cake.”

“Oh cool. But we use -O3 now. . .

“Uh, why you don’t use -O2?”

. . . we solved the startup time issues.”

“hmm, startup time issues?”

J. Hubička Optimizing large applications

Firefox startup
T
im

e

File Offset 21M

15% relocations

4
6
%

 s
ta

ti
c

in
it
ia

liz
er

s

6% misc runtime linker

21M0M

J. Hubička Optimizing large applications

Startup overview

Kernel memory maps the binary and starts dynamic linker
Page demand loading loads only pages touched by app
Prefetch heuristic attempts to reduce random seeking
Based on ELF header kernel dispatch to the dynamic linker

Dynamic linker
Mmaps shared libraries
Process relocations except PLT and fixes memory image
Executes actual program

Program’s runtime
Execute all static constructors in priority order.
If priorities match, constructors are executed backwards so
libraries are constructed first
Execute main()

program does something hopefully useful until it crashes.

J. Hubička Optimizing large applications

Startup overview

Kernel memory maps the binary and starts dynamic linker
Page demand loading loads only pages touched by app
Prefetch heuristic attempts to reduce random seeking
Based on ELF header kernel dispatch to the dynamic linker

Dynamic linker
Mmaps shared libraries
Process relocations except PLT and fixes memory image
Executes actual program

Program’s runtime
Execute all static constructors in priority order.
If priorities match, constructors are executed backwards so
libraries are constructed first
Execute main()

program does something hopefully useful until it crashes.

J. Hubička Optimizing large applications

Startup overview

Kernel memory maps the binary and starts dynamic linker
Page demand loading loads only pages touched by app
Prefetch heuristic attempts to reduce random seeking
Based on ELF header kernel dispatch to the dynamic linker

Dynamic linker
Mmaps shared libraries
Process relocations except PLT and fixes memory image
Executes actual program

Program’s runtime
Execute all static constructors in priority order.
If priorities match, constructors are executed backwards so
libraries are constructed first
Execute main()

program does something hopefully useful until it crashes.

J. Hubička Optimizing large applications

Startup overview

Kernel memory maps the binary and starts dynamic linker
Page demand loading loads only pages touched by app
Prefetch heuristic attempts to reduce random seeking
Based on ELF header kernel dispatch to the dynamic linker

Dynamic linker
Mmaps shared libraries
Process relocations except PLT and fixes memory image
Executes actual program

Program’s runtime
Execute all static constructors in priority order.
If priorities match, constructors are executed backwards so
libraries are constructed first
Execute main()

program does something hopefully useful until it crashes.

J. Hubička Optimizing large applications

ELF answer to shared libraries (1995—1999)

a.out shared libraries was hell to maintain
Required central authority for address space distribution
Required hand crafted entry points with indexes

ELF introduced shared libraries that are very flexible
Linking is done based on symbol name at runtime by
dynamic linker
shared libraries are flexible first

Symbol interposition allows rewriting of given symbol
LD_PRELOAD
Versioning allows better backward compatibility

Some performance features (visibilities) are provided

J. Hubička Optimizing large applications

ELF answer to shared libraries (1995—1999)

a.out shared libraries was hell to maintain
Required central authority for address space distribution
Required hand crafted entry points with indexes

ELF introduced shared libraries that are very flexible
Linking is done based on symbol name at runtime by
dynamic linker
shared libraries are flexible first

Symbol interposition allows rewriting of given symbol
LD_PRELOAD
Versioning allows better backward compatibility

Some performance features (visibilities) are provided

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.

Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.
Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.
Assume that most symbols can be overwritten at
runtime. (tricky to change for exported symbols)

Decades old assumptions:
Static variable initializers rarely take address of symbol.
It is not too common to take address of function or static
variable in code (only for qsort).
Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.
Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.

Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.
Assume that most symbols can be overwritten at
runtime. (tricky to change for exported symbols)

Decades old assumptions:
Static variable initializers rarely take address of symbol.
It is not too common to take address of function or static
variable in code (only for qsort).
Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.
Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.
Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.

Assume that most symbols can be overwritten at
runtime. (tricky to change for exported symbols)

Decades old assumptions:
Static variable initializers rarely take address of symbol.
It is not too common to take address of function or static
variable in code (only for qsort).
Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.
Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.
Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.
Assume that most symbols can be overwritten at
runtime.

(tricky to change for exported symbols)
Decades old assumptions:

Static variable initializers rarely take address of symbol.
It is not too common to take address of function or static
variable in code (only for qsort).
Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.
Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.
Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.
Assume that most symbols can be overwritten at
runtime. (tricky to change for exported symbols)

Decades old assumptions:
Static variable initializers rarely take address of symbol.
It is not too common to take address of function or static
variable in code (only for qsort).
Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.
Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.
Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.
Assume that most symbols can be overwritten at
runtime. (tricky to change for exported symbols)

Decades old assumptions:
Static variable initializers rarely take address of symbol.

It is not too common to take address of function or static
variable in code (only for qsort).
Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.
Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.
Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.
Assume that most symbols can be overwritten at
runtime. (tricky to change for exported symbols)

Decades old assumptions:
Static variable initializers rarely take address of symbol.
It is not too common to take address of function or static
variable in code (only for qsort).

Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

ELF answer to shared libraries II

PIC programming model tells compiler to
Use IP relative addressing whenever possible.
Instead of calling external function directly, call to IP
relative PLT entry. This triggers linking only first time
function is called.
Instead of referring to variable directly use GOT (Global
Offset Table) to concentrate relocations to single place.
Assume that most symbols can be overwritten at
runtime. (tricky to change for exported symbols)

Decades old assumptions:
Static variable initializers rarely take address of symbol.
It is not too common to take address of function or static
variable in code (only for qsort).
Hot parts of programs are not in shared library.

J. Hubička Optimizing large applications

GIMP startup

0 500 1000 1500 2000 2500 3000 3500 4000
Time (ms)

0

1

2

3

4

5

6

7

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.text.startup

.text.unlikely

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

libxul startup

0 500 1000 1500 2000 2500 3000
Time (ms)

0

9

19

28

38

47

O
ff

se
t

(M
B

)

.data.rel.ro

.init array

.eh frame

.eh frame hdr

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

Libreoffice startup

0 1000 2000 3000 4000
Time (ms)

0

5

10

15

20

25

30

35

40

45

O
ff

se
t

(M
B

)

.data.rel.ro

.init array

.eh frame

.eh frame hdr

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

Libreoffice startup, read-ahead enabled

0 500 1000 1500 2000 2500 3000 3500
Time (ms)

0

5

10

15

20

25

30

35

40

45

O
ff

se
t

(M
B

)

.data.rel.ro

.init array

.eh frame

.eh frame hdr

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

libxul startup, startup problem solved

0 2 4 6 8 10 12 14
Time (ms)

0

5

10

15

20

25

30

35

O
ff

se
t

(M
B

)

.data.rel.ro

.init array

.eh frame hdr

.eh frame

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

Kdeinit (2000)

During login procedure start process kdeinit containing
all the shared libraries
Instead of executing an KDE application, fork kdeinit
and dlopen.

J. Hubička Optimizing large applications

Prelink (2004)

Tool developed by Jakub Jelínek
After installation whole distro is walked, binaries are
analyzed and conflict graph of shared libraries is built
Shared libraries gets assigned fixed addresses in the
address space
Binaries are prelinked - i.e. linked with assumption that
libraries are at given positions
Dynamic linking is performed only when something
changed from prelinking time. (fallback mode)

Prelink offers great speedups, but has number of issues
The prelinking modifies all binaries on disk making it
difficult to detect changes, increasing fragmentation
The fallback mode is triggered often (by dlopen, . . .)

J. Hubička Optimizing large applications

Prelink (2004)

Tool developed by Jakub Jelínek
After installation whole distro is walked, binaries are
analyzed and conflict graph of shared libraries is built
Shared libraries gets assigned fixed addresses in the
address space
Binaries are prelinked - i.e. linked with assumption that
libraries are at given positions
Dynamic linking is performed only when something
changed from prelinking time. (fallback mode)

Prelink offers great speedups, but has number of issues
The prelinking modifies all binaries on disk making it
difficult to detect changes, increasing fragmentation
The fallback mode is triggered often (by dlopen, . . .)

J. Hubička Optimizing large applications

Speeding up dynamic linker runtime (2006)

C++ programs spent a lot of CPU time in dynamic linking
comparing symbol names. It grows with
num-libraries×avg-symbol-length

.gnu.hash section
2-bit Bloom filter used for fast lookup if symbol is defined at
all in a in given DSO.
Stronger hash function for actual lookup
Optimized strcmp

Overall GNU hash reduce about 15% of firefox dynamic linking
time. (by LD_DEBUG=statistic)

J. Hubička Optimizing large applications

Speeding up dynamic linker runtime (2006)

C++ programs spent a lot of CPU time in dynamic linking
comparing symbol names. It grows with
num-libraries×avg-symbol-length

.gnu.hash section
2-bit Bloom filter used for fast lookup if symbol is defined at
all in a in given DSO.
Stronger hash function for actual lookup
Optimized strcmp

Overall GNU hash reduce about 15% of firefox dynamic linking
time. (by LD_DEBUG=statistic)

J. Hubička Optimizing large applications

libxul startup

0 500 1000 1500 2000 2500 3000
Time (ms)

0

9

19

28

38

47

O
ff

se
t

(M
B

)

.data.rel.ro

.init array

.eh frame

.eh frame hdr

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

libxul startup, elfhack applied

0 500 1000 1500 2000 2500 3000 3500
Time (ms)

0

4

9

14

19

23

28

33

38

42

O
ff

se
t

(M
B

)

.data.rel.ro

.init array

.eh frame

.eh frame hdr

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

ELFhack = relocations on diet (2010)

Hack introduced by Mike Hommey
20% of Firefox libxul image are relocations
208k relocations out of 239k relocations are IP relative.
ELF relocations are not terribly size optimized

REL relocations on x86 take 8 bytes
RELA relocation on x86-64 take 24 bytes

Elfhack compress the relocations
ELFhack removes IP relative ELF relocations and store
them in compact custom format. It handles well sequences
of IP relative relocations in vtables.
After ELF linking, ELFhack linking completes the process.
ELFhack is general tool but not compatible with -z relro
security feature.

7.5MB of relocations→ 0.3MB.

J. Hubička Optimizing large applications

ELFhack = relocations on diet (2010)

Hack introduced by Mike Hommey
20% of Firefox libxul image are relocations
208k relocations out of 239k relocations are IP relative.
ELF relocations are not terribly size optimized

REL relocations on x86 take 8 bytes
RELA relocation on x86-64 take 24 bytes

Elfhack compress the relocations
ELFhack removes IP relative ELF relocations and store
them in compact custom format. It handles well sequences
of IP relative relocations in vtables.
After ELF linking, ELFhack linking completes the process.
ELFhack is general tool but not compatible with -z relro
security feature.

7.5MB of relocations→ 0.3MB.

J. Hubička Optimizing large applications

Disabling page demand loading (2010)

Current Firefox’ solution to startup time problems
Firefox startup touches almost every page in the binary
Hacking dynamic linker to do mmap makes kernel to load it
sequentially

J. Hubička Optimizing large applications

GIMP startup

0 500 1000 1500 2000 2500 3000 3500 4000
Time (ms)

0

1

2

3

4

5

6

7

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.text.startup

.text.unlikely

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

GIMP startup with subsections

0 2000 4000 6000 8000 10000
Time (ms)

0

1

2

3

4

5

6

7

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.text.hot

.text.startup

.text.unlikely

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

Optimizing code placement (2004, 2010)

Split text section into:
Hot subsection
Normal subsection
Unlikely executed subsection
Startup only subsection (new in 2010),
ordering solved by .initarray
Exit only subsection (new in 2010)

Split data into
readonly data
data w/o relocations in it
data with IP relative relocations
readonly data with IP relative relocations
data with all kinds of relocations
readonly data with all kinds of relocations

J. Hubička Optimizing large applications

The catch

Warning: no gold support until the next release of binutils

Hot/cold code decisions are difficult for the compiler.
-O2 ⇐⇒ “everything may be hot unless you know it is not”

Compiler heuristics to disprove that given code is hot are
limited.
Feedback directed optimization is feasible even for GUI
apps.

It is used by firefox
GUI code is usually not the bottleneck, train the rest
Even not too representative data often works in practice

cold and hot function attributes (2007)
Paths leading to calls to cold function are cold
Functions called only by cold functions are cold.
No use of cold attribute in /usr/include found :(

J. Hubička Optimizing large applications

The catch

Warning: no gold support until the next release of binutils
Hot/cold code decisions are difficult for the compiler.
-O2 ⇐⇒ “everything may be hot unless you know it is not”

Compiler heuristics to disprove that given code is hot are
limited.
Feedback directed optimization is feasible even for GUI
apps.

It is used by firefox
GUI code is usually not the bottleneck, train the rest
Even not too representative data often works in practice

cold and hot function attributes (2007)
Paths leading to calls to cold function are cold
Functions called only by cold functions are cold.
No use of cold attribute in /usr/include found :(

J. Hubička Optimizing large applications

The catch

Warning: no gold support until the next release of binutils
Hot/cold code decisions are difficult for the compiler.
-O2 ⇐⇒ “everything may be hot unless you know it is not”

Compiler heuristics to disprove that given code is hot are
limited.

Feedback directed optimization is feasible even for GUI
apps.

It is used by firefox
GUI code is usually not the bottleneck, train the rest
Even not too representative data often works in practice

cold and hot function attributes (2007)
Paths leading to calls to cold function are cold
Functions called only by cold functions are cold.
No use of cold attribute in /usr/include found :(

J. Hubička Optimizing large applications

The catch

Warning: no gold support until the next release of binutils
Hot/cold code decisions are difficult for the compiler.
-O2 ⇐⇒ “everything may be hot unless you know it is not”

Compiler heuristics to disprove that given code is hot are
limited.
Feedback directed optimization is feasible even for GUI
apps.

It is used by firefox
GUI code is usually not the bottleneck, train the rest
Even not too representative data often works in practice

cold and hot function attributes (2007)
Paths leading to calls to cold function are cold
Functions called only by cold functions are cold.
No use of cold attribute in /usr/include found :(

J. Hubička Optimizing large applications

The catch

Warning: no gold support until the next release of binutils
Hot/cold code decisions are difficult for the compiler.
-O2 ⇐⇒ “everything may be hot unless you know it is not”

Compiler heuristics to disprove that given code is hot are
limited.
Feedback directed optimization is feasible even for GUI
apps.

It is used by firefox
GUI code is usually not the bottleneck, train the rest
Even not too representative data often works in practice

cold and hot function attributes (2007)
Paths leading to calls to cold function are cold
Functions called only by cold functions are cold.
No use of cold attribute in /usr/include found :(

J. Hubička Optimizing large applications

Feedback directed reordering (2013)

Measure first time of function execution
Order functions increasingly in time in the resulting binary

Initial experiments by Taras Glek with hacked valgrind
Implemented to GCC FDO by Martin Liška as his thesis
and SoC project
(will be merged into GCC 4.9 soon)
Currently needs linktime optimization. For non-LTO use
needs linker support that is being discussed.

J. Hubička Optimizing large applications

Feedback directed reordering (2013)

Measure first time of function execution
Order functions increasingly in time in the resulting binary
Initial experiments by Taras Glek with hacked valgrind

Implemented to GCC FDO by Martin Liška as his thesis
and SoC project
(will be merged into GCC 4.9 soon)
Currently needs linktime optimization. For non-LTO use
needs linker support that is being discussed.

J. Hubička Optimizing large applications

Feedback directed reordering (2013)

Measure first time of function execution
Order functions increasingly in time in the resulting binary
Initial experiments by Taras Glek with hacked valgrind
Implemented to GCC FDO by Martin Liška as his thesis
and SoC project
(will be merged into GCC 4.9 soon)

Currently needs linktime optimization. For non-LTO use
needs linker support that is being discussed.

J. Hubička Optimizing large applications

Feedback directed reordering (2013)

Measure first time of function execution
Order functions increasingly in time in the resulting binary
Initial experiments by Taras Glek with hacked valgrind
Implemented to GCC FDO by Martin Liška as his thesis
and SoC project
(will be merged into GCC 4.9 soon)
Currently needs linktime optimization. For non-LTO use
needs linker support that is being discussed.

J. Hubička Optimizing large applications

GIMP startup

0 500 1000 1500 2000 2500 3000 3500 4000
Time (ms)

0

1

2

3

4

5

6

7

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.text.startup

.text.unlikely

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

GIMP startup with subsections

0 2000 4000 6000 8000 10000
Time (ms)

0

1

2

3

4

5

6

7

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.text.hot

.text.startup

.text.unlikely

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

GIMP startup with reordering

0 2000 4000 6000 8000 10000 12000
Time (ms)

0

1

2

3

4

5

6

7

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.text.hot

.text.startup

.text.unlikely

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

Inkscape with reordering

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (ms)

0

0

1

2

3

4

5

6

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

Inkscape with function splitting

0 2000 4000 6000 8000 10000 12000 14000
Time (ms)

0

0

1

2

3

4

5

6

O
ff

se
t

(M
B

)

.strtab

.symtab

.init array

.eh frame

.eh frame hdr

.rodata

.text

.rela.dyn

.dynstr

J. Hubička Optimizing large applications

Refined code placement (2013+)

Ordering by invocation time is cool for startup
For main execution it is good to minimize call distance

Reverse postorder is a good first try, but too simplistic
Clustering program by edges ordered by frequency ignore
indirect calls. Experiments from 2010 did not show any
benefits over RPO.

Profile data needs to be complete (work currently in
progress)

Better support for COMDAT functions
Crossmodule indirect call profiling
Profiling of thunks

We plan to experiment with algorithm starting from
invocation time order performing local optimizations to
minimize hot calls

J. Hubička Optimizing large applications

Static code placement (2013)

We need non-profile based code placement algorithm
Main problem seems to be lack on information on indirect
call

Polymorphic call target analysis implemented last week
Normal indirect call are in minority, can be pruned by types
and points-to

Maybe we need global profile propagation for educated
guesses on what is hot call edge.
We plan to honor original program order as a starting
point.

Is it better than reverse postorder or random order?

J. Hubička Optimizing large applications

Linktime optimization overview

Link time optimization (LTO) extends the scope of
interprocedural analysis from single source file to whole
program visible at the link time

Implemented by calling back to the optimizer backend from
the linker.
Development started in 2005, merged to mainline in 2009.
First released in GCC 4.5.

J. Hubička Optimizing large applications

Linktime optimization overview

Link time optimization (LTO) extends the scope of
interprocedural analysis from single source file to whole
program visible at the link time

Implemented by calling back to the optimizer backend from
the linker.
Development started in 2005, merged to mainline in 2009.
First released in GCC 4.5.

J. Hubička Optimizing large applications

What can be built
GCC itself (GCC 4.5+)
SPEC2k6 benchmarks (GCC 4.5+)
Firefox (GCC 4.7+)
Kernel (thanks to Andi Kleen, GCC 4.8+)
Chrome and Libreoffice (thanks to Martin Liška GCC 4.9+)

Minor patches usually needed for symbols used from ASM
statements. Major hacks needed for kernel.

J. Hubička Optimizing large applications

Memory/CPU usage during Firefox build

0

20

40

60

80

100

%

CPU utilization

0 200 400 600 800 1000 1200 1400 1600
time (s)

0
2
4
6
8

10
12
14
16

R
A

M
(i

n
G

B
)

memory usage

J. Hubička Optimizing large applications

After type merging rewrite by Richard Biener

0

20

40

60

80

100

%

CPU utilization

0 100 200 300 400 500
time (s)

0
2
4
6
8

10
12
14
16

R
A

M
(i

n
G

B
)

memory usage

J. Hubička Optimizing large applications

After early virtual method removal

0

20

40

60

80

100

%

CPU utilization

0 50 100 150 200 250 300 350 400
time (s)

0

2

4

6

8

10

R
A

M
(i

n
G

B
)

memory usage

J. Hubička Optimizing large applications

With better partitioning and parallel streaming

0

20

40

60

80

100

%

CPU utilization

0 50 100 150 200 250
time (s)

0
1
2
3
4
5
6
7
8

R
A

M
(i

n
G

B
)

memory usage

J. Hubička Optimizing large applications

With full debug info

0

20

40

60

80

100

%

CPU utilization

0 50 100 150 200 250 300 350
time (s)

0

2

4

6

8

10

12

14

R
A

M
(i

n
G

B
)

memory usage

J. Hubička Optimizing large applications

Full build — no-LTO, -O2

0

20

40

60

80

100

%

CPU utilization

0 200 400 600 800 1000 1200 1400
time (s)

0

1

2

3

4

5

R
A

M
(i

n
G

B
)

memory usage

J. Hubička Optimizing large applications

Full build — LTO, 6% slower

0

20

40

60

80

100

%

CPU utilization

0 200 400 600 800 1000 1200 1400 1600
time (s)

0
1
2
3
4
5
6
7
8
9

R
A

M
(i

n
G

B
)

memory usage

J. Hubička Optimizing large applications

LTO performance and code size

SPEC2006 relative to -O2;

PGO = Profile Guided Optimization
-fprofile-generate/-fprofile-use

size (FP) size (INT) speed (FP) speed (INT)
-O3 22.92% 14.20% 6.77% 1.41%

-O2+LTO -19.76% -17.46% 1.51% 1.23%
-O3+LTO 3.27% -1.65% 9.82% 5.62%
-O3+PGO 7.43% 11.75% 8.35% 8.21%
-O3+PGO+LTO -4.68% -11.39% 12.41% 12.16%
UG5 -1.23% -9.67% 9.29% 3.77%

UG5 = -O3, -flto -param inline-unit-growth=5%

J. Hubička Optimizing large applications

LTO performance and code size

SPEC2006 relative to -O2;

PGO = Profile Guided Optimization
-fprofile-generate/-fprofile-use

size (FP) size (INT) speed (FP) speed (INT)
-O3 22.92% 14.20% 6.77% 1.41%
-O2+LTO -19.76% -17.46% 1.51% 1.23%
-O3+LTO 3.27% -1.65% 9.82% 5.62%

-O3+PGO 7.43% 11.75% 8.35% 8.21%
-O3+PGO+LTO -4.68% -11.39% 12.41% 12.16%
UG5 -1.23% -9.67% 9.29% 3.77%

UG5 = -O3, -flto -param inline-unit-growth=5%

J. Hubička Optimizing large applications

LTO performance and code size

SPEC2006 relative to -O2;

PGO = Profile Guided Optimization
-fprofile-generate/-fprofile-use

size (FP) size (INT) speed (FP) speed (INT)
-O3 22.92% 14.20% 6.77% 1.41%
-O2+LTO -19.76% -17.46% 1.51% 1.23%
-O3+LTO 3.27% -1.65% 9.82% 5.62%
-O3+PGO 7.43% 11.75% 8.35% 8.21%
-O3+PGO+LTO -4.68% -11.39% 12.41% 12.16%

UG5 -1.23% -9.67% 9.29% 3.77%

UG5 = -O3, -flto -param inline-unit-growth=5%

J. Hubička Optimizing large applications

LTO performance and code size

SPEC2006 relative to -O2;

PGO = Profile Guided Optimization
-fprofile-generate/-fprofile-use

size (FP) size (INT) speed (FP) speed (INT)
-O3 22.92% 14.20% 6.77% 1.41%
-O2+LTO -19.76% -17.46% 1.51% 1.23%
-O3+LTO 3.27% -1.65% 9.82% 5.62%
-O3+PGO 7.43% 11.75% 8.35% 8.21%
-O3+PGO+LTO -4.68% -11.39% 12.41% 12.16%
UG5 -1.23% -9.67% 9.29% 3.77%

UG5 = -O3, -flto -param inline-unit-growth=5%

J. Hubička Optimizing large applications

SpecINT2k6 non-LTO rates (-O2; -Ofast +5%)

J. Hubička Optimizing large applications

SpecFP2k6 non-LTO rates (-O2 +3%; -Ofast, +14%)

J. Hubička Optimizing large applications

LTO only optimization

What matters:
Aggressive unreachable code removal
(15%–20% code size savings)
Cross-module inlining
(almost all spec2k6 speedups come from it)
Function reordering
(over 20% fewer pages read at gimp startup, currently
works well only with profile)

Cross-module indirect call profiling
(important for programs with many polymorphic calls)
Constructor/destructor merging
(C++ only, measurable at firefox startup time)
Identical function merging
(Work in progress by Martin Liška, ICF in gold)

J. Hubička Optimizing large applications

LTO only optimization

What matters:
Aggressive unreachable code removal
(15%–20% code size savings)
Cross-module inlining
(almost all spec2k6 speedups come from it)
Function reordering
(over 20% fewer pages read at gimp startup, currently
works well only with profile)
Cross-module indirect call profiling
(important for programs with many polymorphic calls)

Constructor/destructor merging
(C++ only, measurable at firefox startup time)
Identical function merging
(Work in progress by Martin Liška, ICF in gold)

J. Hubička Optimizing large applications

LTO only optimization

What matters:
Aggressive unreachable code removal
(15%–20% code size savings)
Cross-module inlining
(almost all spec2k6 speedups come from it)
Function reordering
(over 20% fewer pages read at gimp startup, currently
works well only with profile)
Cross-module indirect call profiling
(important for programs with many polymorphic calls)
Constructor/destructor merging
(C++ only, measurable at firefox startup time)
Identical function merging
(Work in progress by Martin Liška, ICF in gold)

J. Hubička Optimizing large applications

LTO only optimization

What is on the way
Reducing program growth to 5% for larger LTO builds
(5-20% code size savings)
Getting rid of external relocations when C++ allows it
Seems to help to libreoffice. Do we want
-fno-semantic-interposition flag?
Static function reordering
Type inheritance analysis, devirtualization, speculative
devirtualization
-fno-fat-lto-objects by default

J. Hubička Optimizing large applications

Problem still unresolved

Command line options behave in unexpected ways
be sure to LTO only stuff that needs one global
optimization setting. Do not LTO modules that needs
specific flags (like -march, -ffast-math or so)
There is no way to define symbols from asm statements in
LTO units
do not LTO these as workaround
Debug info quality is not at match with non-LTO path
(it gets better though)

J. Hubička Optimizing large applications

Compared to 2010

compile serial link parallel link LTO cost binary
2010 9m 4m 27s; 4GB 1m 03s 70% 21m
2013 35m 2m 2s; 4GB 5m 30s 6% 47m

J. Hubička Optimizing large applications

Compared to 2010

compile serial link parallel link LTO cost binary
2010 9m 4m 27s; 4GB 1m 03s 70% 21m
2013 35m 2m 2s; 4GB 5m 30s 6% 47m

J. Hubička Optimizing large applications

Thank you!

Questions?

J. Hubička Optimizing large applications

