
Soft-heaps according to Kaplan and Zwick

A node v stores:

• `(v), r(v) – left and right child
• rank(v) – rank; never changes; ranks of children are smaller by 1
• list(v) – a list of items stored in this node
• ckey(v) – a key common to all keys in list(v)
• size(v) – planned size of list(v)

We build trees out of the nodes:

• ckey s of nodes are heap-ordered
• rank(T) and ckey(T) inherited from the root node

A heap H contains a list of trees in order of increasing rank. A rank of the heap is
a maximum of tree ranks. For each tree T , we store:

• sufmin(T) – pointer to the tree with minimum ckey following T

Setup of parameters:

• r = dlog2(1/ε)e+ 5

• sk = 1 for k ≤ r, else sk =
⌈
3sk−1

2

⌉
• size(v) = sk, where k = rank(v)

Observation: (3/2)k−r ≤ sk ≤ 2 · (3/2)k−r − 1 pro k ≥ r.

Sift(v):

1. While |list(v)| < size(v) and v is not a leaf:

2. If `(v) = ∅ or ckey(`(v)) > ckey(r(v)): `(v)↔ r(v).

3. Move all items from list(`(v)) to list(v).

4. ckey(v)← ckey(`(v)).
5. If `(v) is a leaf, remove it; else Sift(`(v)).

Invariant L: size(v)/2 ≤ |list(v)| ≤ 3 · size(v) for nodes of rank at least r; otherwise
|list(v)| ≥ 1.

Invariant R: #nodes of rank k ≤ n/2k.

Invariant C: #corrupted items ≤ εn.

Potential:

• Heap of rank k contributes k + 1.
• A tree with root x contributes (r + 2) · del(x), where del(x) is the
number of items deleted from list(x) since the previous call to Sift
or creation of the root.
• A root of rank k contributes k + 7.
• Every other node contributes 1.

