Soft-heaps according to Kaplan and Zwick

A node v stores:

- $\ell(v), r(v)$ left and right child
- rank(v) rank; never changes; ranks of children are smaller by 1
- list(v) a list of items stored in this node
- ckey(v) a key common to all keys in list(v)
- size(v) planned size of list(v)

We build trees out of the nodes:

- *ckeys* of nodes are heap-ordered
- rank(T) and ckey(T) inherited from the root node

A heap \mathcal{H} contains a list of trees in order of increasing rank. A rank of the heap is a maximum of tree ranks. For each tree T, we store:

• sufmin(T) – pointer to the tree with minimum ckey following T

Setup of parameters:

- $r = \lceil \log_2(1/\varepsilon) \rceil + 5$
- $s_k = 1$ for $k \le r$, else $s_k = \left\lceil \frac{3s_{k-1}}{2} \right\rceil$
- $size(v) = s_k$, where k = rank(v)

Observation: $(3/2)^{k-r} \le s_k \le 2 \cdot (3/2)^{k-r} - 1$ pro $k \ge r$.

 $\mathbf{Sift}(v)$:

- 1. While |list(v)| < size(v) and v is not a leaf:
- 2. If $\ell(v) = \emptyset$ or $ckey(\ell(v)) > ckey(r(v))$: $\ell(v) \leftrightarrow r(v)$.
- 3. Move all items from $list(\ell(v))$ to list(v).
- 4. $ckey(v) \leftarrow ckey(\ell(v)).$
- 5. If $\ell(v)$ is a leaf, remove it; else $Sift(\ell(v))$.

Invariant L: $size(v)/2 \le |list(v)| \le 3 \cdot size(v)$ for nodes of rank at least r; otherwise $|list(v)| \ge 1$.

Invariant R: #nodes of rank $k \leq n/2^k$.

Invariant C: #corrupted items $\leq \varepsilon n$.

Potential:

- Heap of rank k contributes k + 1.
- A tree with root x contributes $(r + 2) \cdot del(x)$, where del(x) is the number of items deleted from list(x) since the previous call to Sift or creation of the root.
- A root of rank k contributes k + 7.
- Every other node contributes 1.