Graph Algorithms Spanning Trees and Ranking

Martin Mareš
mares@kam.mff.cuni.cz

Department of Applied Mathematics
MFF UK Praha

2008

The Minimum Spanning Tree Problem

1. Minimum Spanning Tree Problem:

- Given a weighted undirected graph, what is its lightest spanning tree?
- In fact, a linear order on edges is sufficient.
- Efficient solutions are very old [Borůvka 1926]
- A long progression of faster and faster algorithms.
- Currently very close to linear time, but still not there.

The Ranking Problems

2. Ranking of Combinatorial Structures:

- We are given a set C of objects with a linear order \prec.
- Ranking function $R_{\prec}(x)$: how many objects precede x ?
- Unranking function $R_{\prec}^{-1}(i)$: what is the i-th object?

The Ranking Problems

2. Ranking of Combinatorial Structures:

- We are given a set C of objects with a linear order \prec.
- Ranking function $R_{\prec}(x)$: how many objects precede x ?
- Unranking function $R_{\prec}^{-1}(i)$: what is the i-th object?

```
Example (toy)
\(C=\{0,1\}^{n}\) with lexicographic order
```


The Ranking Problems

2. Ranking of Combinatorial Structures:

- We are given a set C of objects with a linear order \prec.
- Ranking function $R_{\prec}(x)$: how many objects precede x ?
- Unranking function $R_{\prec}^{-1}(i)$: what is the i-th object?

Example (toy)

$C=\{0,1\}^{n}$ with lexicographic order
$R=$ conversion from binary
$R^{-1}=$ conversion to binary

The Ranking Problems

2. Ranking of Combinatorial Structures:

- We are given a set C of objects with a linear order \prec.
- Ranking function $R_{\prec}(x)$: how many objects precede x ?
- Unranking function $R_{\prec}^{-1}(i)$: what is the i-th object?

Example (toy)

$C=\{0,1\}^{n}$ with lexicographic order
$R=$ conversion from binary
$R^{-1}=$ conversion to binary

Example (a real one)

$C=$ set of all permutations on $\{1, \ldots, n\}$

The Ranking Problems

2. Ranking of Combinatorial Structures:

- We are given a set C of objects with a linear order \prec.
- Ranking function $R_{\prec}(x)$: how many objects precede x ?
- Unranking function $R_{\prec}^{-1}(i)$: what is the i-th object?

Example (toy)

$C=\{0,1\}^{n}$ with lexicographic order
$R=$ conversion from binary
$R^{-1}=$ conversion to binary

Example (a real one)

$C=$ set of all permutations on $\{1, \ldots, n\}$
How to compute the (un)ranking function efficiently?
For permutations, an $\mathcal{O}(n \log n)$ algorithm was known [folklore].
We will show how to do that in $\mathcal{O}(n)$.

Models of computation: RAM

As we approach linear time, we must specify the model.

1. The Random Access Machine (RAM):

- Works with integers
- Memory: an array of integers indexed by integers

Models of computation: RAM

As we approach linear time, we must specify the model.

1. The Random Access Machine (RAM):

- Works with integers
- Memory: an array of integers indexed by integers

Many variants exist, we will use the Word-RAM:

- Machine words of W bits
- The "C operations": arithmetics, bitwise logical op's
- Unit cost
- We know that $W \geq \log _{2}$ |input \mid

Models of computation: PM

2. The Pointer Machine (PM):

- Memory cells accessed via pointers
- Each cell contains $\mathcal{O}(1)$ pointers and $\mathcal{O}(1)$ symbols
- Operates only on pointers and symbols

Models of computation: PM

2. The Pointer Machine (PM):

- Memory cells accessed via pointers
- Each cell contains $\mathcal{O}(1)$ pointers and $\mathcal{O}(1)$ symbols
- Operates only on pointers and symbols

Key differences

- PM has no arrays, we can emulate them in $\mathcal{O}(\log n)$ time.
- PM has no arithmetics.

We can emulate PM on RAM with constant slowdown.
Emulation of RAM on PM is more expensive.

PM Techniques

Bucket Sorting does not need arrays.
Interesting consequences:

- Flattening of multigraphs in $\mathcal{O}(m+n)$
- Unification of sequences in $\mathcal{O}\left(n+\sum_{i} \ell_{i}+|\Sigma|\right)$
- (Sub)tree isomorphism in $\mathcal{O}(n)$ simplified [M. 2008]
- Batched graph computations [Buchsbaum et al. 1998]

RAM Techniques

We can use RAM as a vector machine:

Example (parallel search)

We can encode the vector $(1,5,3,0)$ with 3 -bit fields as:

0001010100110000

And then search for 3 by:

	1001110110111000	$(1,5,3,0)$
XOR	0011001100110011	$(3,3,3,3)$
	1010111010001011	
$-\quad 0001000100010001$	$(1,1,1,1)$	
	1001110101111010	
AND	1000100010001000	
1000100000001000		

RAM Data Structures

We can translate vector operations to \mathcal{O} (1) RAM instructions
\ldots as long as the vector fits in $\mathcal{O}(1)$ words.
We can build "small" data structures operating in $\mathcal{O}(1)$ time:

- Sets
- Ordered sets with ranking
- "Small" heaps of "large" integers [Fredman \& Willard 1990]

Minimum Spanning Trees

Algorithms for Minimum Spanning Trees:

- Classical algorithms [Borůvka, Jarník-Prim, Kruskal]
- Contractive: $\mathcal{O}(m \log n)$ using flattening on the PM (lower bound [M.])
- Iterated: $\mathcal{O}(m \beta(m, n))$ [Fredman \& Tarjan 1987] where $\beta(m, n)=\min \left\{k: \log _{2}^{(k)} n \leq m / n\right\}$
- Even better: $\mathcal{O}(m \alpha(m, n))$ using soft heaps [Chazelle 1998, Pettie 1999]
- MST verification: $\mathcal{O}(m)$ on RAM [King 1997, M. 2008]
- Randomized: $\mathcal{O}(m)$ expected on RAM [Karger et al. 1995]

MST - Special cases

Cases for which we have an $\mathcal{O}(m)$ algorithm:
Special graph structure:

- Planar graphs [Tarjan 1976, Matsui 1995, M. 2004] (PM)
- Minor-closed classes [Tarjan 1983, M. 2004] (PM)
- Dense graphs (by many of the general PM algorithms)

MST - Special cases

Cases for which we have an $\mathcal{O}(m)$ algorithm:
Special graph structure:

- Planar graphs [Tarjan 1976, Matsui 1995, M. 2004] (PM)
- Minor-closed classes [Tarjan 1983, M. 2004] (PM)
- Dense graphs (by many of the general PM algorithms)

Or we can assume more about weights:

- $\mathcal{O}(1)$ different weights [folklore] (PM)
- Integer weights [Fredman \& Willard 1990] (RAM)
- Sorted weights (RAM)

MST - Optimality

There is a provably optimal comparison-based algorithm [Pettie \& Ramachandran 2002]

However, there is a catch ...

MST - Optimality

There is a provably optimal comparison-based algorithm [Pettie \& Ramachandran 2002]

However, there is a catch: Nobody knows its complexity.

We know that it is $\mathcal{O}(\mathcal{T}(m, n))$ where $\mathcal{T}(m, n)$ is the depth of the optimum MST decision tree. Any other algorithm provides an upper bound.

MST - Optimality

There is a provably optimal comparison-based algorithm [Pettie \& Ramachandran 2002]

However, there is a catch: Nobody knows its complexity.

We know that it is $\mathcal{O}(\mathcal{T}(m, n))$ where $\mathcal{T}(m, n)$ is the depth of the optimum MST decision tree. Any other algorithm provides an upper bound.

Corollary

It runs on the PM, so we know that if there is a linear-time algorithm, it does not need any special RAM data structures.
(They can however help us to find it.)

MST - Dynamic algorithms

Sometimes, we need to find the MST of a changing graph. We insert/delete edges, the structure responds with $\mathcal{O}(1)$ modifications of the MST.

- Unweighted cases, similar to dynamic connectivity:
- Incremental: $\mathcal{O}(\alpha(n))$ [Tarjan 1975]
- Fully dynamic: $\mathcal{O}\left(\log ^{2} n\right)$ [Holm et al. 2001]

MST - Dynamic algorithms

Sometimes, we need to find the MST of a changing graph. We insert/delete edges, the structure responds with $\mathcal{O}(1)$ modifications of the MST.

- Unweighted cases, similar to dynamic connectivity:
- Incremental: $\mathcal{O}(\alpha(n))$ [Tarjan 1975]
- Fully dynamic: $\mathcal{O}\left(\log ^{2} n\right)$ [Holm et al. 2001]
- Weighted cases are harder:
- Decremental: $\mathcal{O}\left(\log ^{2} n\right)$ [Holm et al. 2001]
- Fully dynamic: $\mathcal{O}\left(\log ^{4} n\right)$ [Holm et al. 2001]
- Only C weights: $\mathcal{O}\left(C \log ^{2} n\right)$ [M. 2008]

MST - Dynamic algorithms

Sometimes, we need to find the MST of a changing graph. We insert/delete edges, the structure responds with $\mathcal{O}(1)$ modifications of the MST.

- Unweighted cases, similar to dynamic connectivity:
- Incremental: $\mathcal{O}(\alpha(n))$ [Tarjan 1975]
- Fully dynamic: $\mathcal{O}\left(\log ^{2} n\right)$ [Holm et al. 2001]
- Weighted cases are harder:
- Decremental: $\mathcal{O}\left(\log ^{2} n\right)$ [Holm et al. 2001]
- Fully dynamic: $\mathcal{O}\left(\log ^{4} n\right)$ [Holm et al. 2001]
- Only C weights: $\mathcal{O}\left(C \log ^{2} n\right)$ [M. 2008]
- K smallest spanning trees:
- Simple: $\mathcal{O}\left(T_{M S T}+K m\right)$ [Katoh et al. 1981, M. 2008]
- Small $K: \mathcal{O}\left(T_{M S T}+\min \left(K^{2}, K m+K \log K\right)\right)$ [Eppst. 1992]
- Faster: $\mathcal{O}\left(T_{M S T}+\min \left(K^{3 / 2}, K m^{1 / 2}\right)\right)$ [Frederickson 1997]

Back to Ranking

Ranking of permutations on the RAM: [M. \& Straka 2007]

- We need a DS for the subsets of $\{1, \ldots, n\}$ with ranking
- The result can be $n!\Rightarrow$ word size is $\Omega(n \log n)$ bits
- We can represent the subsets as RAM vectors
- This gives us an $\mathcal{O}(n)$ time algorithm for (un)ranking

Easily extendable to k-permutations, also in $\mathcal{O}(n)$

Restricted permutations

For restricted permutations (e.g., derangements): [M. 2008]

- Describe restrictions by a bipartite graph
- Existence of permutation reduces to network flows
- The ranking function can be used to calculate permanents, so it is \#P-complete
- However, this is the only obstacle. Calculating $\mathcal{O}(n)$ sub-permanents is sufficient.
- For derangements, we have achieved $\mathcal{O}(n)$ time after $\mathcal{O}\left(n^{2}\right)$ time preprocessing.

Summary

Summary:

- Low-level algorithmic techniques on RAM and PM
- Generalized pointer-based sorting and RAM vectors
- Applied to a variety of problems:
- A short linear-time tree isomorphism algorithm
- A linear-time algorithm for MST on minor-closed classes
- Corrected and simplified MST verification
- Dynamic MST with small weights
- Ranking and unranking of permutations
- Also:
- A lower bound for the Contractive Borůvka's algorithm
- Simplified soft-heaps

Good Bye

The End

