
Graph Algorithms
Spanning Trees and Ranking

Martin Mareš
mares@kam.mff.cuni.cz

Department of Applied Mathematics
MFF UK Praha

2008

Martin Mareš Graph Algorithms

The Minimum Spanning Tree Problem

1. Minimum Spanning Tree Problem:

Given a weighted undirected graph,
what is its lightest spanning tree?
In fact, a linear order on edges is sufficient.
Efficient solutions are very old [Borůvka 1926]
A long progression of faster and faster algorithms.
Currently very close to linear time, but still not there.

Martin Mareš Graph Algorithms

The Ranking Problems

2. Ranking of Combinatorial Structures:

We are given a set C of objects with a linear order ≺.
Ranking function R≺(x): how many objects precede x?
Unranking function R−1

≺ (i): what is the i-th object?

Example (toy)

C = {0, 1}n with lexicographic order
R = conversion from binary
R−1 = conversion to binary

Example (a real one)

C = set of all permutations on {1, . . . , n}

How to compute the (un)ranking function efficiently?
For permutations, an O(n log n) algorithm was known [folklore].
We will show how to do that in O(n).

Martin Mareš Graph Algorithms

The Ranking Problems

2. Ranking of Combinatorial Structures:

We are given a set C of objects with a linear order ≺.
Ranking function R≺(x): how many objects precede x?
Unranking function R−1

≺ (i): what is the i-th object?

Example (toy)

C = {0, 1}n with lexicographic order

R = conversion from binary
R−1 = conversion to binary

Example (a real one)

C = set of all permutations on {1, . . . , n}

How to compute the (un)ranking function efficiently?
For permutations, an O(n log n) algorithm was known [folklore].
We will show how to do that in O(n).

Martin Mareš Graph Algorithms

The Ranking Problems

2. Ranking of Combinatorial Structures:

We are given a set C of objects with a linear order ≺.
Ranking function R≺(x): how many objects precede x?
Unranking function R−1

≺ (i): what is the i-th object?

Example (toy)

C = {0, 1}n with lexicographic order
R = conversion from binary
R−1 = conversion to binary

Example (a real one)

C = set of all permutations on {1, . . . , n}

How to compute the (un)ranking function efficiently?
For permutations, an O(n log n) algorithm was known [folklore].
We will show how to do that in O(n).

Martin Mareš Graph Algorithms

The Ranking Problems

2. Ranking of Combinatorial Structures:

We are given a set C of objects with a linear order ≺.
Ranking function R≺(x): how many objects precede x?
Unranking function R−1

≺ (i): what is the i-th object?

Example (toy)

C = {0, 1}n with lexicographic order
R = conversion from binary
R−1 = conversion to binary

Example (a real one)

C = set of all permutations on {1, . . . , n}

How to compute the (un)ranking function efficiently?
For permutations, an O(n log n) algorithm was known [folklore].
We will show how to do that in O(n).

Martin Mareš Graph Algorithms

The Ranking Problems

2. Ranking of Combinatorial Structures:

We are given a set C of objects with a linear order ≺.
Ranking function R≺(x): how many objects precede x?
Unranking function R−1

≺ (i): what is the i-th object?

Example (toy)

C = {0, 1}n with lexicographic order
R = conversion from binary
R−1 = conversion to binary

Example (a real one)

C = set of all permutations on {1, . . . , n}

How to compute the (un)ranking function efficiently?
For permutations, an O(n log n) algorithm was known [folklore].
We will show how to do that in O(n).

Martin Mareš Graph Algorithms

Models of computation: RAM

As we approach linear time, we must specify the model.

1. The Random Access Machine (RAM):

Works with integers
Memory: an array of integers indexed by integers

Many variants exist, we will use the Word-RAM:

Machine words of W bits
The “C operations”: arithmetics, bitwise logical op’s
Unit cost
We know that W ≥ log2 |input|

Martin Mareš Graph Algorithms

Models of computation: RAM

As we approach linear time, we must specify the model.

1. The Random Access Machine (RAM):

Works with integers
Memory: an array of integers indexed by integers

Many variants exist, we will use the Word-RAM:

Machine words of W bits
The “C operations”: arithmetics, bitwise logical op’s
Unit cost
We know that W ≥ log2 |input|

Martin Mareš Graph Algorithms

Models of computation: PM

2. The Pointer Machine (PM):

Memory cells accessed via pointers
Each cell contains O(1) pointers and O(1) symbols
Operates only on pointers and symbols

Key differences

PM has no arrays, we can emulate them in O(log n) time.
PM has no arithmetics.

We can emulate PM on RAM with constant slowdown.
Emulation of RAM on PM is more expensive.

Martin Mareš Graph Algorithms

Models of computation: PM

2. The Pointer Machine (PM):

Memory cells accessed via pointers
Each cell contains O(1) pointers and O(1) symbols
Operates only on pointers and symbols

Key differences

PM has no arrays, we can emulate them in O(log n) time.
PM has no arithmetics.

We can emulate PM on RAM with constant slowdown.
Emulation of RAM on PM is more expensive.

Martin Mareš Graph Algorithms

PM Techniques

Bucket Sorting does not need arrays.

Interesting consequences:

Flattening of multigraphs in O(m + n)

Unification of sequences in O(n +
∑

i `i + |Σ|)
(Sub)tree isomorphism in O(n) simplified [M. 2008]
Batched graph computations [Buchsbaum et al. 1998]

Martin Mareš Graph Algorithms

RAM Techniques

We can use RAM as a vector machine:

Example (parallel search)

We can encode the vector (1, 5, 3, 0) with 3-bit fields as:

0001 0101 0011 0000

And then search for 3 by:

1001 1101 1011 1000 (1, 5, 3, 0)
XOR 0011 0011 0011 0011 (3, 3, 3, 3)

1010 1110 1000 1011
− 0001 0001 0001 0001 (1, 1, 1, 1)

1001 1101 0111 1010
AND 1000 1000 1000 1000

1000 1000 0000 1000

Martin Mareš Graph Algorithms

RAM Data Structures

We can translate vector operations to O(1) RAM instructions
. . . as long as the vector fits in O(1) words.

We can build “small” data structures operating in O(1) time:

Sets
Ordered sets with ranking
“Small” heaps of “large” integers [Fredman & Willard 1990]

Martin Mareš Graph Algorithms

Minimum Spanning Trees

Algorithms for Minimum Spanning Trees:

Classical algorithms [Borůvka, Jarnı́k-Prim, Kruskal]
Contractive: O(m log n) using flattening on the PM
(lower bound [M.])
Iterated: O(m β(m, n)) [Fredman & Tarjan 1987]
where β(m, n) = min{k : log(k)

2 n ≤ m/n}
Even better: O(m α(m, n)) using soft heaps
[Chazelle 1998, Pettie 1999]
MST verification: O(m) on RAM [King 1997, M. 2008]
Randomized: O(m) expected on RAM [Karger et al. 1995]

Martin Mareš Graph Algorithms

MST – Special cases

Cases for which we have an O(m) algorithm:

Special graph structure:

Planar graphs [Tarjan 1976, Matsui 1995, M. 2004] (PM)
Minor-closed classes [Tarjan 1983, M. 2004] (PM)
Dense graphs (by many of the general PM algorithms)

Or we can assume more about weights:

O(1) different weights [folklore] (PM)
Integer weights [Fredman & Willard 1990] (RAM)
Sorted weights (RAM)

Martin Mareš Graph Algorithms

MST – Special cases

Cases for which we have an O(m) algorithm:

Special graph structure:

Planar graphs [Tarjan 1976, Matsui 1995, M. 2004] (PM)
Minor-closed classes [Tarjan 1983, M. 2004] (PM)
Dense graphs (by many of the general PM algorithms)

Or we can assume more about weights:

O(1) different weights [folklore] (PM)
Integer weights [Fredman & Willard 1990] (RAM)
Sorted weights (RAM)

Martin Mareš Graph Algorithms

MST – Optimality

There is a provably optimal comparison-based algorithm
[Pettie & Ramachandran 2002]

However, there is a catch . . .

Nobody knows its complexity.

We know that it is O(T (m, n)) where T (m, n) is the depth of the
optimum MST decision tree. Any other algorithm provides an
upper bound.

Corollary
It runs on the PM, so we know that if there is a linear-time
algorithm, it does not need any special RAM data structures.
(They can however help us to find it.)

Martin Mareš Graph Algorithms

MST – Optimality

There is a provably optimal comparison-based algorithm
[Pettie & Ramachandran 2002]

However, there is a catch: Nobody knows its complexity.

We know that it is O(T (m, n)) where T (m, n) is the depth of the
optimum MST decision tree. Any other algorithm provides an
upper bound.

Corollary
It runs on the PM, so we know that if there is a linear-time
algorithm, it does not need any special RAM data structures.
(They can however help us to find it.)

Martin Mareš Graph Algorithms

MST – Optimality

There is a provably optimal comparison-based algorithm
[Pettie & Ramachandran 2002]

However, there is a catch: Nobody knows its complexity.

We know that it is O(T (m, n)) where T (m, n) is the depth of the
optimum MST decision tree. Any other algorithm provides an
upper bound.

Corollary
It runs on the PM, so we know that if there is a linear-time
algorithm, it does not need any special RAM data structures.
(They can however help us to find it.)

Martin Mareš Graph Algorithms

MST – Dynamic algorithms

Sometimes, we need to find the MST of a changing graph.
We insert/delete edges, the structure responds with O(1)
modifications of the MST.

Unweighted cases, similar to dynamic connectivity:
Incremental: O(α(n)) [Tarjan 1975]
Fully dynamic: O(log2 n) [Holm et al. 2001]

Weighted cases are harder:
Decremental: O(log2 n) [Holm et al. 2001]
Fully dynamic: O(log4 n) [Holm et al. 2001]
Only C weights: O(C log2 n) [M. 2008]

K smallest spanning trees:
Simple: O(TMST + Km) [Katoh et al. 1981, M. 2008]
Small K : O(TMST + min(K 2, Km + K log K)) [Eppst. 1992]
Faster: O(TMST + min(K 3/2, Km1/2)) [Frederickson 1997]

Martin Mareš Graph Algorithms

MST – Dynamic algorithms

Sometimes, we need to find the MST of a changing graph.
We insert/delete edges, the structure responds with O(1)
modifications of the MST.

Unweighted cases, similar to dynamic connectivity:
Incremental: O(α(n)) [Tarjan 1975]
Fully dynamic: O(log2 n) [Holm et al. 2001]

Weighted cases are harder:
Decremental: O(log2 n) [Holm et al. 2001]
Fully dynamic: O(log4 n) [Holm et al. 2001]
Only C weights: O(C log2 n) [M. 2008]

K smallest spanning trees:
Simple: O(TMST + Km) [Katoh et al. 1981, M. 2008]
Small K : O(TMST + min(K 2, Km + K log K)) [Eppst. 1992]
Faster: O(TMST + min(K 3/2, Km1/2)) [Frederickson 1997]

Martin Mareš Graph Algorithms

MST – Dynamic algorithms

Sometimes, we need to find the MST of a changing graph.
We insert/delete edges, the structure responds with O(1)
modifications of the MST.

Unweighted cases, similar to dynamic connectivity:
Incremental: O(α(n)) [Tarjan 1975]
Fully dynamic: O(log2 n) [Holm et al. 2001]

Weighted cases are harder:
Decremental: O(log2 n) [Holm et al. 2001]
Fully dynamic: O(log4 n) [Holm et al. 2001]
Only C weights: O(C log2 n) [M. 2008]

K smallest spanning trees:
Simple: O(TMST + Km) [Katoh et al. 1981, M. 2008]
Small K : O(TMST + min(K 2, Km + K log K)) [Eppst. 1992]
Faster: O(TMST + min(K 3/2, Km1/2)) [Frederickson 1997]

Martin Mareš Graph Algorithms

Back to Ranking

Ranking of permutations on the RAM: [M. & Straka 2007]

We need a DS for the subsets of {1, . . . , n} with ranking
The result can be n! ⇒ word size is Ω(n log n) bits
We can represent the subsets as RAM vectors
This gives us an O(n) time algorithm for (un)ranking

Easily extendable to k -permutations, also in O(n)

Martin Mareš Graph Algorithms

Restricted permutations

For restricted permutations (e.g., derangements): [M. 2008]

Describe restrictions by a bipartite graph
Existence of permutation reduces to network flows
The ranking function can be used to calculate permanents,
so it is #P-complete
However, this is the only obstacle. Calculating O(n)
sub-permanents is sufficient.
For derangements, we have achieved O(n) time after
O(n2) time preprocessing.

Martin Mareš Graph Algorithms

Summary

Summary:

Low-level algorithmic techniques on RAM and PM
Generalized pointer-based sorting and RAM vectors
Applied to a variety of problems:

A short linear-time tree isomorphism algorithm
A linear-time algorithm for MST on minor-closed classes
Corrected and simplified MST verification
Dynamic MST with small weights
Ranking and unranking of permutations

Also:
A lower bound for the Contractive Borůvka’s algorithm
Simplified soft-heaps

Martin Mareš Graph Algorithms

Good Bye

THE END

Martin Mareš Graph Algorithms

