
20+ years CFG profile in GCC

Honza Hubička

SuSE ČR s.r.o
Prague

GNU Cauldron 2023, Cambridge

J. Hubička 20+ years CFG profile in GCC



What is CFG profile

CFG profile is an annotation of the control flow graph (CFG) by
Expected branch probabilities
expected basic block execution counts

Zdeněk Dvořák, J. H., Pavel Nejdedlý, Josef Zlomek: Infrastructure for Profile Driven Optimizations in GCC
Compiler, April 2002

https://www.ucw.cz/~hubicka/papers/proj.pdf

J. Hubička 20+ years CFG profile in GCC

https://www.ucw.cz/~hubicka/papers/proj.pdf


Profile based optimizations
• Originally an excuse to re-organize GCC

backend to use commonized control flow
graph module

• Re-organized reg-stack to use CFG in 1998
• Started to work on profile infrastructure in

2000
• School project together with Zdeněk, Josef

and Pavel in 2001-2002
• AMD Project in 2002-2003

Profile feedback & unit-at-a-time – p.2/14

J. Hubička 20+ years CFG profile in GCC



Profile based optimizations
• Originally an excuse to re-organize GCC

backend to use commonized control flow
graph module

• Re-organized reg-stack to use CFG in 1998
• Started to work on profile infrastructure in

2000
• School project together with Zdeněk, Josef

and Pavel in 2001-2002
• AMD Project in 2002-2003

Profile feedback & unit-at-a-time – p.2/14

J. Hubička 20+ years CFG profile in GCC



GCC in 2000

1 Virtually all optimizations done at RTL form
2 RTL function is a single doubly-linked list of statements

(no CFG!)
3 Few optimization passes built and used their own CFG

(reg-stack, register allocator, Haifa scheduler, dead code
elimination, . . . )

4 Instruction-level notes used to represent information about
loops, libcalls, debug info, . . .

Richard Henderson did initial work on generalizing flow.c to
general CFG infrastructure shared by multiple passes.

J. Hubička 20+ years CFG profile in GCC



Original design

Two forms of profile
1 Edge profiling

-fprofile-generate and -fprofile-use
Originally by James Wilson, Cygnus, 1990
Ball T, Larus JR. Optimally profiling and tracing programs. ACM Transactions on Programming

Languages and Systems (TOPLAS). 1994 Jul 1;16(4):1319-60.

2 Static profile estimation
-fguess-branch-probability
Originally by Jason Eckhart & Stan Cox, Cygnus, 2000
Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

3 Value profiling
-fprofile-values
Added by Zdeněk Dvořák in 2003

4 Auto-FDO (based on low overhead profiling)
-fauto-profile
Contributed by Google in 2014, now maintained by Eugene
Rozenfeld

J. Hubička 20+ years CFG profile in GCC



Original design

Two forms of profile
1 Edge profiling

-fprofile-generate and -fprofile-use
Originally by James Wilson, Cygnus, 1990
Ball T, Larus JR. Optimally profiling and tracing programs. ACM Transactions on Programming

Languages and Systems (TOPLAS). 1994 Jul 1;16(4):1319-60.

2 Static profile estimation
-fguess-branch-probability
Originally by Jason Eckhart & Stan Cox, Cygnus, 2000
Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

3 Value profiling
-fprofile-values
Added by Zdeněk Dvořák in 2003

4 Auto-FDO (based on low overhead profiling)
-fauto-profile
Contributed by Google in 2014, now maintained by Eugene
Rozenfeld

J. Hubička 20+ years CFG profile in GCC



Original design

Two forms of profile
1 Edge profiling

-fprofile-generate and -fprofile-use
Originally by James Wilson, Cygnus, 1990
Ball T, Larus JR. Optimally profiling and tracing programs. ACM Transactions on Programming

Languages and Systems (TOPLAS). 1994 Jul 1;16(4):1319-60.

2 Static profile estimation
-fguess-branch-probability
Originally by Jason Eckhart & Stan Cox, Cygnus, 2000
Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

3 Value profiling
-fprofile-values
Added by Zdeněk Dvořák in 2003

4 Auto-FDO (based on low overhead profiling)
-fauto-profile
Contributed by Google in 2014, now maintained by Eugene
Rozenfeld

J. Hubička 20+ years CFG profile in GCC



Original design
In 2000, as part of work on improving Itanium, branch
probability and execution count notes was added to RTL to
enable basic block reordering pass.

We decided to take this as an excuse to introduce persistent
CFG as part of the RTL IL.

1 Static profile represented as:
1 probabilities of edges (in range 0...10000) and
2 frequencies of basic blocks (integers in range 0...10000)

2 Profile feedback (edge profile) represented as:
1 execution counts of edges (64bit integers)
2 execution counts of basic blocks (64bit integers)

3 Value profile was read and immediately used for code
transformations

Most work was involved in redesigning existing passes to
maintain and use CFG.

J. Hubička 20+ years CFG profile in GCC



Original design
In 2000, as part of work on improving Itanium, branch
probability and execution count notes was added to RTL to
enable basic block reordering pass.

We decided to take this as an excuse to introduce persistent
CFG as part of the RTL IL.

1 Static profile represented as:
1 probabilities of edges (in range 0...10000) and
2 frequencies of basic blocks (integers in range 0...10000)

2 Profile feedback (edge profile) represented as:
1 execution counts of edges (64bit integers)
2 execution counts of basic blocks (64bit integers)

3 Value profile was read and immediately used for code
transformations

Most work was involved in redesigning existing passes to
maintain and use CFG.

J. Hubička 20+ years CFG profile in GCC



Original design
In 2000, as part of work on improving Itanium, branch
probability and execution count notes was added to RTL to
enable basic block reordering pass.

We decided to take this as an excuse to introduce persistent
CFG as part of the RTL IL.

1 Static profile represented as:
1 probabilities of edges (in range 0...10000) and
2 frequencies of basic blocks (integers in range 0...10000)

2 Profile feedback (edge profile) represented as:
1 execution counts of edges (64bit integers)
2 execution counts of basic blocks (64bit integers)

3 Value profile was read and immediately used for code
transformations

Most work was involved in redesigning existing passes to
maintain and use CFG.

J. Hubička 20+ years CFG profile in GCC



Static profile estimation (analyze_brprob.py)
heuristics hitrate perfect hitrate Coverage
combined 69.74% / 80.61% 100.0%
first match 77.81% / 78.31% 69.0%
no prediction 33.65% / 85.08% 15.6%
DS theory 70.14% / 86.40% 15.4%

First match:
loop iterations 67.99% / 67.99% 39.1%
guessed loop iterations 91.73% / 92.49% 23.2%
loop exit 85.36% / 87.83% 5.8%
noreturn call 100.00% / 100.00% 0.8%
Fortran loop preheader 99.81% / 99.88% 0.6%
extra loop exit 82.80% / 88.17% 0.2%
loop iv compare 52.06% / 52.15% 0.0%
Fortran overflow 100.00% / 100.00% 0.0%
Fortran fail alloc 100.00% / 100.00% 0.0%
loop guard with recursion 17.17% / 93.91% 0.0%

Dempster–Shaffer (DS) theory:
opcode values nonequal (on trees) 67.63% / 81.38% 7.2%
call 67.26% / 92.26% 3.3%
early return (on trees) 54.39% / 86.51% 3.2%
opcode values positive (on trees) 64.55% / 90.39% 1.7%
pointer (on trees) 69.59% / 87.18% 1.6%
continue 66.66% / 82.85% 1.0%
loop guard 61.88% / 88.38% 0.6%
guess loop iv compare 97.75% / 97.79% 0.4%
null return 91.47% / 93.08% 0.3%
negative return 97.94% / 99.23% 0.1%
const return 69.39% / 87.09% 0.0%
loop exit with recursion 72.17% / 92.33% 0.0%
recursive call 75.19% / 76.33% 0.0%
Fortran repeated allocation/deallocation 100.00% / 100.00% 0.0%
Fortran zero-sized array 100.00% / 100.00% 0.0%

J. Hubička 20+ years CFG profile in GCC



Consumers of the profile information

1 Basic-block reordering pass
2 Code alignment (function/loop/jump target alignment)
3 Register allocation (to spill on cold paths)
4 Loop optimizer (to determine unrolling and peeling factors)
5 Loop array prefetching
6 Tracer (new pass doing tail duplication over common

paths)
7 Cold code discovery (optimize cold regions for size)

8 Interprocedural optimizations: Inliner, function cloning
9 Function partitioning

10 Function splitting
11 Higher-level loop optimizations
12 Profile is useful in handling various side cases (code

sinking, PRE, . . . )

J. Hubička 20+ years CFG profile in GCC



Consumers of the profile information

1 Basic-block reordering pass
2 Code alignment (function/loop/jump target alignment)
3 Register allocation (to spill on cold paths)
4 Loop optimizer (to determine unrolling and peeling factors)
5 Loop array prefetching
6 Tracer (new pass doing tail duplication over common

paths)
7 Cold code discovery (optimize cold regions for size)
8 Interprocedural optimizations: Inliner, function cloning
9 Function partitioning

10 Function splitting
11 Higher-level loop optimizations
12 Profile is useful in handling various side cases (code

sinking, PRE, . . . )

J. Hubička 20+ years CFG profile in GCC



Results in 2002

J. Hubička 20+ years CFG profile in GCC



Results in 2023

J. Hubička 20+ years CFG profile in GCC



Persistent loop information
GCC was also updated to keep persistent information about the
loop structure We keep following info

1 Upper bound on number of iterations
2 Likely upper bound on number of iterations
3 Expected number of iterations
4 Is loop known to be finite?
5 Force/enable vectorization flag
6 Intended unrolling factor
7 . . .

Loop structures are linked with header basic blocks:
1 Code duplication code should mind updating loop structure
2 Some passes move loop headers and should also update

the links
(otherwise loop is lost & rediscovered and all annotations
are forgotten)

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
C++ data-types replacing frequencies, probabilities and counts:

1 profile_probability, 32 bits stored in CFG edges:
1 29 bits of fixed point probability (value in 0...1)
2 3 bits quality information:

1 UNINITIALIZED_PROFILE
2 GUESSED
3 AFDO
4 ADJUSTED (value used to be known precisely but we

duplicated code and it may not be representative anymore)
5 PRECISE

2 profile_count, 64 bits stored in CFG basic blocks and
callgraph:

1 61 bits fixed point execution count
2 3 bits quality information with few extra options:

1 GESSED_LOCAL (value is known only within single function
and is relative to the entry block count)

2 GESSED_GLOBAL0 (function was never executed in train run,
but we have local estimate)

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
C++ data-types replacing frequencies, probabilities and counts:

1 profile_probability, 32 bits stored in CFG edges:
1 29 bits of fixed point probability (value in 0...1)
2 3 bits quality information:

1 UNINITIALIZED_PROFILE
2 GUESSED
3 AFDO
4 ADJUSTED (value used to be known precisely but we

duplicated code and it may not be representative anymore)
5 PRECISE

2 profile_count, 64 bits stored in CFG basic blocks and
callgraph:

1 61 bits fixed point execution count
2 3 bits quality information with few extra options:

1 GESSED_LOCAL (value is known only within single function
and is relative to the entry block count)

2 GESSED_GLOBAL0 (function was never executed in train run,
but we have local estimate)

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
C++ data-types replacing frequencies, probabilities and counts:

1 profile_probability, 32 bits stored in CFG edges:
1 29 bits of fixed point probability (value in 0...1)
2 3 bits quality information:

1 UNINITIALIZED_PROFILE
2 GUESSED
3 AFDO
4 ADJUSTED (value used to be known precisely but we

duplicated code and it may not be representative anymore)
5 PRECISE

2 profile_count, 64 bits stored in CFG basic blocks and
callgraph:

1 61 bits fixed point execution count
2 3 bits quality information with few extra options:

1 GESSED_LOCAL (value is known only within single function
and is relative to the entry block count)

2 GESSED_GLOBAL0 (function was never executed in train run,
but we have local estimate)

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
1 profile_probability supports:

1 Predefined values:
1 never (0 precise), always (1 precise),
2 even (0.5 guessed),
3 likely (0.8 guessed)„ unlikely (0.2 guessed)
4 very_likely (0.998 guessed), very_unlikely (0.002)
5 uninitialized
6 . . .

2 Basic operations +,−, ∗, /, pow, sqrt with obvious meaning.
All capping and propagating quality info.

3 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

4 Conversion to sreal; conversion to original
REG_BR_PROB_BASE fixpoint is deprecated

5 Probability can be applied to profile_count
6 Probability can be scaled by fractions of two

profile_counts or gcov_types
7 reliable_p predicate
8 Dumping, debug output and LTO streaming
9 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
1 profile_probability supports:

1 Predefined values:
1 never (0 precise), always (1 precise),
2 even (0.5 guessed),
3 likely (0.8 guessed)„ unlikely (0.2 guessed)
4 very_likely (0.998 guessed), very_unlikely (0.002)
5 uninitialized
6 . . .

2 Basic operations +,−, ∗, /, pow, sqrt with obvious meaning.
All capping and propagating quality info.

3 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

4 Conversion to sreal; conversion to original
REG_BR_PROB_BASE fixpoint is deprecated

5 Probability can be applied to profile_count
6 Probability can be scaled by fractions of two

profile_counts or gcov_types
7 reliable_p predicate
8 Dumping, debug output and LTO streaming
9 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
1 profile_probability supports:

1 Predefined values:
1 never (0 precise), always (1 precise),
2 even (0.5 guessed),
3 likely (0.8 guessed)„ unlikely (0.2 guessed)
4 very_likely (0.998 guessed), very_unlikely (0.002)
5 uninitialized
6 . . .

2 Basic operations +,−, ∗, /, pow, sqrt with obvious meaning.
All capping and propagating quality info.

3 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

4 Conversion to sreal; conversion to original
REG_BR_PROB_BASE fixpoint is deprecated

5 Probability can be applied to profile_count
6 Probability can be scaled by fractions of two

profile_counts or gcov_types
7 reliable_p predicate
8 Dumping, debug output and LTO streaming
9 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
1 profile_probability supports:

1 Predefined values:
1 never (0 precise), always (1 precise),
2 even (0.5 guessed),
3 likely (0.8 guessed)„ unlikely (0.2 guessed)
4 very_likely (0.998 guessed), very_unlikely (0.002)
5 uninitialized
6 . . .

2 Basic operations +,−, ∗, /, pow, sqrt with obvious meaning.
All capping and propagating quality info.

3 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

4 Conversion to sreal; conversion to original
REG_BR_PROB_BASE fixpoint is deprecated

5 Probability can be applied to profile_count
6 Probability can be scaled by fractions of two

profile_counts or gcov_types
7 reliable_p predicate
8 Dumping, debug output and LTO streaming
9 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
1 profile_probability supports:

1 Predefined values:
1 never (0 precise), always (1 precise),
2 even (0.5 guessed),
3 likely (0.8 guessed)„ unlikely (0.2 guessed)
4 very_likely (0.998 guessed), very_unlikely (0.002)
5 uninitialized
6 . . .

2 Basic operations +,−, ∗, /, pow, sqrt with obvious meaning.
All capping and propagating quality info.

3 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

4 Conversion to sreal; conversion to original
REG_BR_PROB_BASE fixpoint is deprecated

5 Probability can be applied to profile_count
6 Probability can be scaled by fractions of two

profile_counts or gcov_types

7 reliable_p predicate
8 Dumping, debug output and LTO streaming
9 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
1 profile_probability supports:

1 Predefined values:
1 never (0 precise), always (1 precise),
2 even (0.5 guessed),
3 likely (0.8 guessed)„ unlikely (0.2 guessed)
4 very_likely (0.998 guessed), very_unlikely (0.002)
5 uninitialized
6 . . .

2 Basic operations +,−, ∗, /, pow, sqrt with obvious meaning.
All capping and propagating quality info.

3 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

4 Conversion to sreal; conversion to original
REG_BR_PROB_BASE fixpoint is deprecated

5 Probability can be applied to profile_count
6 Probability can be scaled by fractions of two

profile_counts or gcov_types
7 reliable_p predicate

8 Dumping, debug output and LTO streaming
9 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp
1 profile_probability supports:

1 Predefined values:
1 never (0 precise), always (1 precise),
2 even (0.5 guessed),
3 likely (0.8 guessed)„ unlikely (0.2 guessed)
4 very_likely (0.998 guessed), very_unlikely (0.002)
5 uninitialized
6 . . .

2 Basic operations +,−, ∗, /, pow, sqrt with obvious meaning.
All capping and propagating quality info.

3 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

4 Conversion to sreal; conversion to original
REG_BR_PROB_BASE fixpoint is deprecated

5 Probability can be applied to profile_count
6 Probability can be scaled by fractions of two

profile_counts or gcov_types
7 reliable_p predicate
8 Dumping, debug output and LTO streaming
9 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp

1 profile_count supports:
1 Predefined values:

1 zero (0 precise),
2 adjusted_zero (0 adjusted),
3 guessed_zero (0 guessed),
4 uninitialized

2 ipa_p predicate if the value is meaningful at
inter-procedural level and ipa conversion function.

3 Basic operations +,−. All capping.
4 ∗, / by integer.
5 Comparisons <,>,=, <=, >= are three-way and returns

false if unknown.
6 apply_probability to multiply by a probability
7 apply_scale to scale by a given fraction
8 probability_in to determine of probability of one count

in another
9 Dumping, debug output and LTO streaming

10 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp

1 profile_count supports:
1 Predefined values:

1 zero (0 precise),
2 adjusted_zero (0 adjusted),
3 guessed_zero (0 guessed),
4 uninitialized

2 ipa_p predicate if the value is meaningful at
inter-procedural level and ipa conversion function.

3 Basic operations +,−. All capping.
4 ∗, / by integer.
5 Comparisons <,>,=, <=, >= are three-way and returns

false if unknown.
6 apply_probability to multiply by a probability
7 apply_scale to scale by a given fraction
8 probability_in to determine of probability of one count

in another
9 Dumping, debug output and LTO streaming

10 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp

1 profile_count supports:
1 Predefined values:

1 zero (0 precise),
2 adjusted_zero (0 adjusted),
3 guessed_zero (0 guessed),
4 uninitialized

2 ipa_p predicate if the value is meaningful at
inter-procedural level and ipa conversion function.

3 Basic operations +,−. All capping.
4 ∗, / by integer.

5 Comparisons <,>,=, <=, >= are three-way and returns
false if unknown.

6 apply_probability to multiply by a probability
7 apply_scale to scale by a given fraction
8 probability_in to determine of probability of one count

in another
9 Dumping, debug output and LTO streaming

10 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp

1 profile_count supports:
1 Predefined values:

1 zero (0 precise),
2 adjusted_zero (0 adjusted),
3 guessed_zero (0 guessed),
4 uninitialized

2 ipa_p predicate if the value is meaningful at
inter-procedural level and ipa conversion function.

3 Basic operations +,−. All capping.
4 ∗, / by integer.
5 Comparisons <,>,=, <=, >= are three-way and returns

false if unknown.

6 apply_probability to multiply by a probability
7 apply_scale to scale by a given fraction
8 probability_in to determine of probability of one count

in another
9 Dumping, debug output and LTO streaming

10 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp

1 profile_count supports:
1 Predefined values:

1 zero (0 precise),
2 adjusted_zero (0 adjusted),
3 guessed_zero (0 guessed),
4 uninitialized

2 ipa_p predicate if the value is meaningful at
inter-procedural level and ipa conversion function.

3 Basic operations +,−. All capping.
4 ∗, / by integer.
5 Comparisons <,>,=, <=, >= are three-way and returns

false if unknown.
6 apply_probability to multiply by a probability
7 apply_scale to scale by a given fraction
8 probability_in to determine of probability of one count

in another

9 Dumping, debug output and LTO streaming
10 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp

1 profile_count supports:
1 Predefined values:

1 zero (0 precise),
2 adjusted_zero (0 adjusted),
3 guessed_zero (0 guessed),
4 uninitialized

2 ipa_p predicate if the value is meaningful at
inter-procedural level and ipa conversion function.

3 Basic operations +,−. All capping.
4 ∗, / by integer.
5 Comparisons <,>,=, <=, >= are three-way and returns

false if unknown.
6 apply_probability to multiply by a probability
7 apply_scale to scale by a given fraction
8 probability_in to determine of probability of one count

in another
9 Dumping, debug output and LTO streaming

10 . . .

J. Hubička 20+ years CFG profile in GCC



2017 CFG profile revamp

Value histograms are attached to statements using on-side
hash similar way as we do with EH regions.

1 First execution time profiling
(for code reordering)

2 Indirect call profiling
(represented in callgraph to aid inlining)

3 Division/modulo by constant or power of 2 transformation
4 String operation buffer size profiling

J. Hubička 20+ years CFG profile in GCC



Profile maintenance

1 Profile info is estimated or read in early and needs to be
maintained across the whole optimization pipeline

2 Low-level API (edge redirection, BB creation, . . . ) has no
info needed to determine profile

3 Sometimes profile becomes incoherent as a result of
optimizations:
int foo (int a)
{

if (a) // 0.5 probability before inlining
bar ();

}
main()
{
foo (0); // probability 0 after inline
foo (1); // probability 1 after inline

}

Every pass is responsible to cleanup its own mess!

J. Hubička 20+ years CFG profile in GCC



Profile maintenance

1 Profile info is estimated or read in early and needs to be
maintained across the whole optimization pipeline

2 Low-level API (edge redirection, BB creation, . . . ) has no
info needed to determine profile

3 Sometimes profile becomes incoherent as a result of
optimizations:
int foo (int a)
{

if (a) // 0.5 probability before inlining
bar ();

}
main()
{
foo (0); // probability 0 after inline
foo (1); // probability 1 after inline

}

Every pass is responsible to cleanup its own mess!

J. Hubička 20+ years CFG profile in GCC



Profile maintenance

1 Profile info is estimated or read in early and needs to be
maintained across the whole optimization pipeline

2 Low-level API (edge redirection, BB creation, . . . ) has no
info needed to determine profile

3 Sometimes profile becomes incoherent as a result of
optimizations:
int foo (int a)
{

if (a) // 0.5 probability before inlining
bar ();

}
main()
{
foo (0); // probability 0 after inline
foo (1); // probability 1 after inline

}

Every pass is responsible to cleanup its own mess!

J. Hubička 20+ years CFG profile in GCC



2023 is a year of profile fixes for me

Our LNT tester tracks profile quality building tramp3d
https://lnt.opensuse.org/db_default/v4/CPP/latest_runs_report counts section

J. Hubička 20+ years CFG profile in GCC

https://lnt.opensuse.org/db_default/v4/CPP/latest_runs_report


Progress so far

vectorizer ;; ::

loop header copying ; :

loop splitting ;

jump threading ;

loop peeling :::

loop versioning ::

loop unrolling ::

branch prediction ::

profile datatructures ::

DCE :

reassoc :

sreal :

loop invariant motion :

loop distribution :

Patches in various stage of baking ; ::::

No RTL yet

J. Hubička 20+ years CFG profile in GCC



Progress so far

vectorizer ;; ::

loop header copying ; :

loop splitting ;

jump threading ;

loop peeling :::

loop versioning ::

loop unrolling ::

branch prediction ::

profile datatructures ::

DCE :

reassoc :

sreal :

loop invariant motion :

loop distribution :

Patches in various stage of baking ; ::::

No RTL yet

J. Hubička 20+ years CFG profile in GCC



Hmmer with -Ofast -flto -march=native

J. Hubička 20+ years CFG profile in GCC



Please mind the profile!
1 Use blocks-details dump flags to see information

about profile mismatches.
2 If you spot some after your transformation try to see if it is

carried in or needs to be fixed
3 -fprofile-report can be used to get overall data

about profile quality
4 Add tests checking profile updates searching for

Invalid sum
5 Try to think of side cases:

1 What happens when profile is missing
2 What happens when profile is inconsistent on the input

(try to minimize chance of spreading the error further)
3 . . .

6 Transformations affecting CFG needs to update profile
(even if you just update conditional to constant 0 or 1 and
let cfgcleanup do the work)

7 Transformations affecting loop headers or iteration counts
needs to update loop structure

J. Hubička 20+ years CFG profile in GCC



-fprofile-report on cc1plus; late scalar cleanup
pass profile mismathces size time
86i inline +44649708141 +33.1% -10.3%
103t ccp +48243471353 -0.5% -0.6%
108t cunrolli -5321807717 -0.0% -0.9%
111t forwprop +6468 -0.1% -0.1%
114t fre +24027489258 -1.2% -2.2%
116t threadfull +384565874522 -0.1% -2.2%
117t vrp +33600542417 -4.7% -0.5%
118t dse -1256513433 -0.3% -0.8%
119t dce -3122885968 -0.1% -0.4%
122t cselim -4219221947 -0.0% +0.1%
123t copyprop +1366809955 -0.0% -0.0%
124t ifcombine -377126355 +0.1% +0.6%
125t mergephi -4203847197
126t phiopt +3328253040 -0.2% -0.1%
127t tailr +436974 -0.0% -0.0%
128t ch +1910701333 +0.3% -0.1%
131t sra -0.3% -1.4%
132t thread +19416347646 +0.1% -0.2%
133t dom +108076654929 +0.6% -1.4%
134t copyprop +7207906125 -0.1% -0.2%
135t isolate-paths +1308251212 +0.1% -0.0%
136t reassoc +3910185448 +0.1% +0.4%
137t dce +6480998024 -0.6% -0.8%
138t forwprop +3833217719 -0.2% -0.2%
139t phiopt -700396863 -0.0% -0.0%
140t ccp +249246775 -0.0% -0.0%
144t lim +0.0% -0.3%
146t pre +6023194805 -1.1% -1.2%
147t sink +289483116 -0.2% -0.8%
151t dse -0.1% -0.2%
152t dce -367616368 -0.0% -0.0%
156t unswitch +9830153927 +0.1% -0.1%

J. Hubička 20+ years CFG profile in GCC



-fprofile-reporton cc1plus; loop opt and cleanup
pass profile mismathces size time
157t lsplit +14490079645 +0.1% -0.1%
161t cddce +669837664745 -0.0% -0.0%
162t ivcanon -27256511 -0.0% +0.2%
163t ldist -281039842 +0.0% -0.1%
165t copyprop +27035589 -0.0% -0.0%
173t ch_vect -1046470417 +0.0% +0.0%
174t ifcvt +29259121621 +0.3% +1.1%
175t vect -29025607210 -0.2% -0.9%
176t dce -17302853 -0.0% -0.1%
178t cunroll -15270158714 +2.9% -0.3%
179t fre +4869608409 -0.1% -0.3%
185t loopdone +184441655 -0.0% -0.0%
187t slp -0.3% -0.0%
189t veclower2 -1076208793 -0.0% -0.0%
190t switchlower +210516697487 +0.1% +0.8%
193t reassoc +21247652009 +0.1% +0.3%
196t tracer -336562640930 +2.1% +0.2%
197t fre +14786972198 -0.1% -0.2%
198t thread +54685466506 +0.2% -0.3%
199t dom -77643836674 +0.2% -0.5%
201t threadfull +3263568385 +0.2% -0.1%
202t vrp +10265768145 -0.2% -0.1%
203t ccp +1452217296 -0.0% -0.1%
205t dse +296953356 -0.7% -0.6%
206t dce -740575118 -0.0% -0.0%
207t forwprop +57913221 -0.1% -0.1%
208t sink -6059911247 -0.1% -0.1%
209t phiopt -640623 -0.0% -0.0%
210t fab -26448502 -0.0% -0.0%
212t store-merging -0.1% -0.0%
213t cddce +266716939779 -0.0% -0.0%
214t tailc -18449860 -0.0% -0.0%

J. Hubička 20+ years CFG profile in GCC



-fprofile-reporton cc1plus; RTL

pass profile mismathces size time
267r cse1 +421885069 -0.1% +0.0%
268r fwprop1 -5.6% -3.4%
269r cprop +8353476384 -0.3% -0.7%
270r rtl pre +0.6% +0.6%
272r cprop +99659357 -0.6% -0.8%
274r cse_local +2592078 -0.1% -0.3%
275r ce1 -181502659 -0.1% +0.1%
279r loop2_invariant +0.1% +0.1%
280r loop2_unroll +292954091 +0.0% -0.0%
282r loop2_done -14842665470 -0.0% +0.0%
285r cprop +4083486645 -0.1% -0.1%
287r cse2 +209418484 -0.2% -0.1%
289r fwprop2 +14820737 -0.0% -0.0%
293r combine +1095431281 -0.4% -0.7%
296r ce2 -93648750 -0.0% +0.0%
297r jump_after_combine +8056118858 -0.0% -0.0%
298r bbpart -162391652 +0.9% -0.0%
309r ira +1.6% +1.2%
310r reload +332096918 -4.5% -3.5%
317r pro_and_epilogue +132365843216 +5.6% +14.6%
320r jump2 +159341511698 -2.2% +0.4%
324r ce3 -462446573 -0.0% +0.0%
328r bbro -169410373304 -0.5% -1.8%

J. Hubička 20+ years CFG profile in GCC



Please use the profile in your passes
1 Use optimize_*_for_speed and
optimize_*_for_size.
(* is one of function, bb, insn, loop, loop_nest)

2 optimize_*_for_size is now two-state predicate.
Returned value is optimize_size_level enum:

0: OPTIMIZE_SIZE_NO
optimize for speed, this may be hot part of program.
1: OPTIMIZE_SIZE_BALANCED
this is likely not hot part of program but evidence is low;
avoid bloat but do not do extreme tradeoffs
2: OPTIMIZE_SIZE_MAX
do everything possible to reduce code size

(A lot of target specific work is needed here)
3 Use persistent loop info in loop transformations

Most loop transforms are miss for loops iterating 0 or very
few times

4 Use probabilities and counts to guide decisions about code
paths

J. Hubička 20+ years CFG profile in GCC



Please use the profile in your passes
1 Use optimize_*_for_speed and
optimize_*_for_size.
(* is one of function, bb, insn, loop, loop_nest)

2 optimize_*_for_size is now two-state predicate.
Returned value is optimize_size_level enum:

0: OPTIMIZE_SIZE_NO
optimize for speed, this may be hot part of program.
1: OPTIMIZE_SIZE_BALANCED
this is likely not hot part of program but evidence is low;
avoid bloat but do not do extreme tradeoffs
2: OPTIMIZE_SIZE_MAX
do everything possible to reduce code size

(A lot of target specific work is needed here)

3 Use persistent loop info in loop transformations
Most loop transforms are miss for loops iterating 0 or very
few times

4 Use probabilities and counts to guide decisions about code
paths

J. Hubička 20+ years CFG profile in GCC



Please use the profile in your passes
1 Use optimize_*_for_speed and
optimize_*_for_size.
(* is one of function, bb, insn, loop, loop_nest)

2 optimize_*_for_size is now two-state predicate.
Returned value is optimize_size_level enum:

0: OPTIMIZE_SIZE_NO
optimize for speed, this may be hot part of program.
1: OPTIMIZE_SIZE_BALANCED
this is likely not hot part of program but evidence is low;
avoid bloat but do not do extreme tradeoffs
2: OPTIMIZE_SIZE_MAX
do everything possible to reduce code size

(A lot of target specific work is needed here)
3 Use persistent loop info in loop transformations

Most loop transforms are miss for loops iterating 0 or very
few times

4 Use probabilities and counts to guide decisions about code
paths

J. Hubička 20+ years CFG profile in GCC



Please use the profile in your passes
1 Use optimize_*_for_speed and
optimize_*_for_size.
(* is one of function, bb, insn, loop, loop_nest)

2 optimize_*_for_size is now two-state predicate.
Returned value is optimize_size_level enum:

0: OPTIMIZE_SIZE_NO
optimize for speed, this may be hot part of program.
1: OPTIMIZE_SIZE_BALANCED
this is likely not hot part of program but evidence is low;
avoid bloat but do not do extreme tradeoffs
2: OPTIMIZE_SIZE_MAX
do everything possible to reduce code size

(A lot of target specific work is needed here)
3 Use persistent loop info in loop transformations

Most loop transforms are miss for loops iterating 0 or very
few times

4 Use probabilities and counts to guide decisions about code
paths

J. Hubička 20+ years CFG profile in GCC



Please use the profile in your passes
1 Use optimize_*_for_speed and
optimize_*_for_size.
(* is one of function, bb, insn, loop, loop_nest)

2 optimize_*_for_size is now two-state predicate.
Returned value is optimize_size_level enum:

0: OPTIMIZE_SIZE_NO
optimize for speed, this may be hot part of program.
1: OPTIMIZE_SIZE_BALANCED
this is likely not hot part of program but evidence is low;
avoid bloat but do not do extreme tradeoffs
2: OPTIMIZE_SIZE_MAX
do everything possible to reduce code size

(A lot of target specific work is needed here)
3 Use persistent loop info in loop transformations

Most loop transforms are miss for loops iterating 0 or very
few times

4 Use probabilities and counts to guide decisions about code
paths

J. Hubička 20+ years CFG profile in GCC



Future plans

1 Fix remaining bugs
2 More test coverage (302 testcases in trunk compared to 76

in GCC 13)
3 Track more lnt testcases
4 Integrate histogram profiling code (see Ondra’s talk!)
5 Make vectorizer to use histogram profiles
6 Set up auto-FDO performance testing
7 Enable partitioning for more targets
8 Profile feedback at LTO linktime (no need to recompile)
9 . . .

J. Hubička 20+ years CFG profile in GCC



Thank you!

J. Hubička 20+ years CFG profile in GCC


